
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB129569

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors; Critical Technology; MAR
1988. Other requests shall be referred to Air
Force Armament Lab., Eglin AFB, FL 32542. This
document contains export-controlled technical
data.

AFSC ltr dtd 13 Feb 1992



AFATL -TR-ÄM & 

Common Ada Missile Packages—Phase 2 
(CAMP-2) 

Volume II.   11th Missile Demonstration 

D McNicholI 
C Palmer 
J Mason, et al. 

AD-B129 569 

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY 

P O BOX 516 
ST LOUIS. MO  63166 

NOVEMBER 1988 

DTIC 
ELECTE 
DEC 1 2 1988 i 

oJE 
D 

l-INAL REPORT FOR PERIOD SEPTEMBER 1985-MARCH 1988 

CBIUCAL TßüüWüLOQY 

Distribution authorized to U.S. Government agencies and their contractors only; 
thic roport doeumefte-test-and cvaluatiei^ distribution limitation applied March 1988. 
Other requests for this document must be referred to the Air Force Armament 
Laboratory (FXG) Eglin Air Force Base, Florida 32542 - 5434.       

DESTRUCTION NOTICE - For classified documents, follow the procedures 
in DoD 5220.22- M, Industrial Security Manual, Section II-19 or DoD 5200.1 - R, 
Information Security Prcrram Regulation, Chapter IX.  For unclassified, limited 
documents, destroy by any method that will prevent disclosure of contents or 
reconstruction of the document. 

AIR FORCE ARMAMENT LABORATORY 
Air Force Systems Command I United States Air Force I Eglin Air Force Base, Florida 

8 8   13 



NOTICE 

When Government drawings, specifications, or other data are used for 
any purpose other than in connection with a definitely Government-related 
procurement, the United States Government incurs no responsibility or any 
obligation whatsoever.    The fact that the Government may have formulated 
or in any way supplied the said drawings, specifications, or other data,  is 
not to be regarded by implication, or otherwise as in any manner construed, 
as licensing the holder, or any other person or corporation;  or as conveying 
any rights or permission to manufacture, use, or sell  any patented invention 
that may in any way be related thereto. 

This report has been reviewed and is approved for publication. 

FOR THE COMMANDER 

STEPHEN C.  KORN 
Chief,  Aeromechanics Division 

Even though this report ma> contain special   release rights held by 
the controlling office, please do not request copies from the Air Force 
Armament Laboratory.    If you qualify as a recipient, release approval 
will  be obtained from the originating activity by DTIC.    Address your 
request for additional copies to: 

Defense Technical  Information Center 
Cameron Station 
Alexandria, VA   22304-6145 

If your address has changed, if you wish to be removed from our mailing 
list, or if your organization no longer employs the addressee, please notify 
AFATL/FXG, Eglin AFB, FL 32542-5434, to help us maintain a current mailing 
list. 

Do not return copies of this report unless contractual  obligations or 
notice on a specific document requires that it be returned. 



UNCLASSIFIED 
gegwTy mmmm 6t TUB wca 

REPORT DOCUMENTATION PAGE 
form Approved 
OMB NO. 0704-0188 

1*. REPORT SECURITY CLASSIFICATION 

UNCLASSIFIED 
Ib. RESTRICTIVE MARKINGS 

CTJTTCA^ TECHNOLOGT 
2«. SECURITY CLASSIFICATION AUTHORITY 

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE 

ft. PERFORMING ORGANIZATION REPORT NLIMBER(S) 

3. DISTRIBUTION/AVAILABILITY OF REPORT 
Distribution authorized to U.S. Government 
Agencies and their contractors; 

nr i mi um Hi rrn 
. MONITORING ORGANIZATION REPORT NUMBER(S) 

AFATL-TR-88-62,  Volume II 

6a. NAME OF PERFORMING ORGANIZATION 

McDonnell Douglas 
AEilironfliililflr mum  

6c. ADDRESS (C«y, Statt, »nd 2IPCodt) 

P.O.  Box 516 
St Louis MO 63166 

6b. OFFICE SYMBOL 
(If »pplkablt) 

7a. NAME OF MONITORING ORGANIZATION 
Aeromechanics Division 
Guidance and Control Branch 
7b. ADDRESS (CAy, State, and ZIP Code) 

Air Force Armament Laboratory 
Eg!in Air Force Base, Florida 32542-5434 

8a. NAME OF FUNDING/SPONSORING 
ORGANIZATION 

STARS Joint Program Office 

8b OFFICE SYMBOL 
(If applicable) 

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 

F08635-86-C-0025 
8c. ADDRESS (Ofy, Statt, and ZIP Code) 

Room 3D139 (1211 Fern St) 
The Pentagon 
Washington DC 20301-3081 

10. SOURCE OF FUNDING NUMBERS 

PROGRAM 
ELEMENT NO. 

63756D 

PROJECT 
NO 

921D 

TASK 
NO 

ii. TITLE («»K/udtStcurftyOaii/ffcat/on) Comoo Ada Missi1e Packages-Phase 2 (CAMP-2), 

Volume   II:    nth Missile Demonstration 

GT 

WORK UNIT 
ACCESSION NO. 

02 

12. PERSONAL AUTHOR(S) 

D.G. McNicholl. J.F. Masont C. Palmer, T.T. Taylor, and L.A. Finch 
13a. TYPE OF REPORT 

Final 
13b. TIME COVERED 

FROM Sep 85   TO Mar 88 
14. DATE OF REPORT (Year, Month, Day) 

November 1988 
15. PAGE COUNT 

128 
16. SUPPLEMENTARY NOTATION 

Availability of this report is specified on verso of front cover. (OVER) 
17. COSATI COOES 

FIELD GROUP SUB-GROUP 

18. SUBJECT TERMS {Continue on rtvtna if ntcastary and idtntny by Mock number) 

Reusable Software, Missile Software, Software Generators, 
Ada parts. Composition, Systems, Software Parts 

19. ABSTRACT (Continue on reverse if necessary and identify by block number) 
The CAMP project,  primarily funded ty the STARS Joint 
Force Armament Laboratory,   and performed by McDonnell 
approach to demonstrating the feasibility and utility 
real-time embedded missile systems.    CAMP products inc 
parts in Ada for tactical missiles,   and a prototype pa 
parts  identification,  cataloging and construction.     In 
reuse concept,  a missile subsystem was built using the 
significant increase in software productivity when dev 
modern software engineering practice,   robust software 
engineers. 

Program Office,  sponsored by the Air 
Douglas,  has taken a pragmatic 
of the concept of software reuse for 
lüde:    452 operational flight software 
rts engineering system to support 
order to demonstrate the value of the 
CAMP parts.    Results indicate a 

eloping systems using parts,   Ada, 
tools,  and knowledgeable software 

This report is documented  in three volumes:    Volume I - CAMP Parts and Parts Composition 
System,  Volume II - 11th Missile Demonstration, and Volume III - CAMP Armonics Bsnchnmrks. 

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 

D UNCLASSIFIED/UNLIMITED     (3 SAME AS RPT.        Q OTIC USERS 

21   ABSTRACT SECURITY CLASSIFICATION 
UNCLASSIFIED 

22a NAME OF RESPONSIBLE INDIVIDUAL 

Christine M. Anderson 
22b. TELEPHONE (Include Area Code) 

(904) 882-2961  
22c. OFFICE SYMBOL 

AFATL/FXG 
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE 

UNCLASSIFIED 



UNCLASSIFIED 

3. DISTRIBUTION/AVAILABILITY OF REPORT (CONCLUDED) 

distribution limitation applied March 1988. Other requests for this document 
must be referred to the Air Force Armament Laboratory (FXG), Eglin Air Force 
Base, Florida 32542-5434. 

16. SUPPLEMENTARY NOTATION (CONCLUDED) 

TRADEMARKS 

The following table lists the trademarks used throughout this document: 

|       TRADEMARK TRADEMARK OF 

|ACT Advanced Computer Techniques 

|ART Inference Corporation 

1 ART Studio Inference Corporation 

[CMS Digital Equipment Corporation 

|DEC Digital Equipment Corporation                        j 

Mikros Mikros. Inc.                                                  j 

1 Oracle Oracle Corporation 

Scribe Scribe Systems                                                1 

Symbolics Symbolics, Inc. 

Symbolics 3620 Symbolics. Inc.                                               j 

TLD TLD Systems Ltd                                              j 

VAX Digital Equipment Corporation                         j 

VMS                             1 Digital Equipment Corporation 

NCLASSIFIED 



PREFACE 

This report describes the work performed, Ihe results obtained, and the conclusions reached during 
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tember 1985. and March 1988. 

The MDAC-STL CAMP program manager was: 

Dr. Daniel G. McNicholl 
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McDonnell Douglas Astronautics Company 
P.O. Box 516 
St. Louis. Missouri 63166 

The AFATL CAMP program manager was: 

Christine M. Anderson 
Guidance and Control Branch 
Aeromechanics Division 
Air Force Armament Laboratory 
Eglin Air Force Base. Florida 32542-5434 

This report consists of three volumes. Volume I contains information on the development of the 
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Application development. Volume III contains the results of the CAMP Armonics Benchmarks Suite 

development. 
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SECTION I 

INTRODUCTION 

I. PURPOSE 

This report contains a description of the work performed, the results achieved, and the lessons 

learned on the 11th Missile Application of the Common Ada Missile Packages Phase 2 (CAMP-2) 

project. CAMP-2 was a multi-year research effort in which the McDonnell Douglas Astronautics 

Company-St. Louis (MDAC-STL) demonstrated the feasibility and value of reusable Ada software parts 

in embedded, real-time, mission-critical, DoD applications. This was accomplished by (a) building a 

library of efficient and reusable Ada parts for missile flight applications, (b) building a prototype parts 

composition system (PCS), and (c) testing the parts and the PCS by using them on an actual missile 

application (the 11th Missile). 

The CAMP project has been sponsored by the Air Force Armament Laboratory at Eglin Air Force 

Base, and partially funded by the Air Force Armament Division; the DoD Software Technology for 

Adaptable, Reliable Systems (STARS) Program Office; and the Air Force Electronic Systems Division. 

The Ada Joint Program Office (AJPO) sponsored the initial distribution of CAMP Ada parts to 120 

Government agencies and contractors. This software is now available through the Air Force Defense 

Analysis Center for Software (DACS) at Griffiss Air Force Base, New York. 

2. GOALS AND OBJECTIVES 

The overall goal of CAMP-2 was to demonstrate the technical feasibility and value of reusable Ada 

missile parts and a PCS by building and using them on a realistic application. The 11th Missile Applica- 

tion involved the construction of an actual missile application using the Ada parts and the PCS, and 

testing of the developed system in a MIL-STD-I750A hardware-in-the-loop simulation. The initial goals 

of the application are enumerated below. 

1. Construct a complete missile application using CAMP parts and the PCS, and test it in a 17S0A 

hardware-in-the-loop simulation. 

2. Evaluate the suitability of the CAMP parts and the PCS for real-time embedded missile applica- 

tions. 

3. Test the CAMP parts and the PCS. and recommend corrections and improvements. 

4. Quantify (he productivity improvement attributable to the use of CAMP parts and the PCS. 

Although not explicitly stated as goals, the 1 Ith Missile Application also served as the basis for (1) 

an evaluation of the suitability of Ada for real-time embedded missile applications, and (2) an evaluation 

of the suitability of an Ada/I 7S0A compiler for real-time embedded applications. 



3. DELIVERABLES 

The deliverable products of the 11th Missile Application were: 

1. Software Requirements Specification: The requirements of the missile application documented in 

accordance with DOD-STD-2167. AFATL-TR-88-24, Volume 1. 

2. Top-Level Design Document: The architectural design for the 11th Missile system documented in 

accordance with DOD-STD-2167, AFATL-TR-88-24, Volume 2. 

3. Test Plan:   The plan by which the 11th Missile system was tested in accordance with DOD- 

STD-2167. AFATL-TR-88-22. 

4. Test Report:  The results of testing the application in accordance with DOD-STD-2167.  This 

includes an evaluation of the 11 th Missile development. 

4. OR(JANIZATI()N OF THE REPORT 

Due to the large amount of data to be discussed in this report, it has been divided into three volumes. 
The remaining sections of Volume II are organized as follows. 

• Section II describes the development and testing of the 11th Missile Application. 

• Section III evaluates the CAMP parts and their suitability for real-time embedded missile applica- 

tions. 

• Section IV evaluates the Kaiman Filter Constructor, which is part of the CAMP PCS, and its 

suitability for real-time embedded missile applications. 

• Section V evaluates the suitability and effectiveness of the Ada language for real-time embedded 

missile applications. 

• Section VI evaluates the suitability of an Ada/1750A compiler for real-time embedded missile 

applications and shows how to "work around" the problems encountered. 

• Section VII contains conclusions and recommendations. 

Volume I describes the development and testing of the CAMP parts and the PCS.   Volume III 
describes the development and testing of the Armonics Benchmarks. 



SECTION II 

DEVELOPMENT AND TESTING OF I1TH MISSILE APPLICATION 

I. WHAT IS THE 1ITH MISSILE? 

The CAMP parts and parts composition system (PCS) were designed and implemented following a 

domain analysis of ten missiles (see Table 1). To test the parts and PCS in a realistic setting, an "11th 

Missile" was held in reserve and a portion of its software was implemented using them. 

TABLE 1. THE CAMP DOMAIN 

1. Flight Software for the Medium Ringe Air-lo-Surf»ce Missile (AOM- I09H) 

2. Flight Softwsre for the Medium Range Alr-lo-Surface Missile (AOM- I09L) 

3. Slrapdown Inertial Navigation Program for the Unaided Tactical Guidance 
Project 

4. Guidance and Navigation Program for the Mldcouree Guidance Demonstra- 
tion 

5. Flight Software for the Tomahawk Land Attack Missile (BGM- I09A) 

6. Right Software for the Tomahawk Anti-Ship Missile (BOM-I09B) 

7. Flight Software for the Tomahawk Land Attack Missile (BGM- I09O 

8. Flight Software for the Tomahawk Land Attack Missile (BGM- I09G) 

9. Flight Software for the Harpoon Missile (Block IC) 

10.        Safeguard Spartan Missile 

The 11th Missile Application was based on a cruise missile application that was originally im- 

plemented in JOVIAL J73. The original application had five MIL-STD-17S0A processors and an Inertial 

Sensor Assembly (ISA), which communicate by means of a MIL-STD-1553B data bus (see Figure I). 

The shared memory contained terrain altitude data. The processors and their primary functions are shown 

in Table 2. In addition, all processors were programmed to perform the following support functions: 

• Restart the application program 

• Return control lo start-up ROM 

• Communicate via the 1553B bus 

• Issue periodic status messages 

The 11th Missile Application is a re-implementation (starting with a new requirements specification) 

of the navigation, ground alignment, Kaiman filtering, ISA interface, lateral guidance, lateral-directional 

autopilot, and support functions of the original software. The navigation, Kaiman filtering, lateral 

guidance, and lateral-directional autopilot were chosen because there were CAMP parts to support those 

functions. The other functions were required to complete a functioning computer program. 
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Figure 1.   11th Missile Hardware Design 

TABLE 2. PROCESSORS AND THEIR FUNCTIONS 

Processor Functions 

Conlrol Communicales wiih operator connote 
Downloads, starin. and «lops software in all other machinal 
Mode logic 

Navigation Wander-azimuth navigation 
Transfer alignment 
Ground alignment 
21-sUle Kaiman filler 
Start up, test, and communicate with ISA 

Guidance Waypoint-steering lateral guidance 
Vertical guidance 
Lateral-directional autopilot 

Correlation Dedicated to Terrain Profile Matching 

Sensor Controls sensor system hardware 



Two versions of the 11th Missile Application were written. The first version ("Parts Method") was 

written using the CAMP parts, but not the CAMP PCS. The second version ("PCS Method") used the 

PCS to generate Kaiman filter code. The PCS Method implementation was not a complete rewrite of the 

code; rather, the PCS-generated Kaiman filter code was integrated with the rest of the Parts Method code 

and unit tested. 

2. ELEVENTH MISSILE DEVELOPMENT 

a. Requirements Development 

The lllh Missile requirements were developed in accordance with DOD-STD-2167, and 

documented in a Software Requirements Specification (SRS). This specification combined elements of 

the existing application's navigation, guidance, and interface requirements (see Figure 2). 
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Figure 2.   I llh Missile Requirements Came From Several Sources 



(1) Navigation Requirements 

The 11th Missile navigation requirements came from several sources. The existing 

application's navigation requirements were documented in a MIL-STD-1679 Computer Program 

Development Specification (CPDS), but it was badly out-of-date; it served primarily as an outline of the 

high-level requirements. There was also a MIL-STD-1679 Computer Program Product Specification 

(CPPS), which included Ada Design Language (ADL) and which was more nearly up-to-date. Interviews 

with the original software developers were necessary to determine which requirements had changed since 

the CPPS; in these cases, the requirements were abstracted from the updated ADL or, occasionally, from 

the JOVIAL code. 

(2) Guidance Requirements 

The guidance requirements for the existing application were specified in a MIL-STD-483 

B-S development specification. The lateral guidance and lateral-directional autopilot algorithms were 

reused from the Medium Range Air-to-Surface Missile (MRASM) program, therefore, these requirements 

were stable and the specification was up-to-date and complete. 

The 11th Missile team discovered an error in the autopilot requirements while developing 

the open-loop integration test for the Guid Computer. The problem was referred to the requirements 

group for the existing application; they verified the error and corrected their requirements specification. 

The CAMP project corrected the 11th Missile SRS to conform to the revised requirements. 

(3) Interface Requirements 

The 1553B bus protocols and the formats of all bus messages were specified in a database 

maintained by the original application. That project used the database to automatically generate the 
JOVIAL code that specified the message formats for the application programs, the FORTRAN code tor 

the real-time-simulation software, and the interface requirements specification. The 11th Missile team 

used the database to get up-to-date message specifications and change notices. 

b. Top-Lev el Design 

(I) Object-Oriented Design 

In an object-oriented design, the requirements are functionally decomposed and assigned 

to Ada packages. There may be several levels of decomposition, which generally correspond to nested 

Ada packages. 

In the Hth Missile implementation of this method, tasks are subsidiary to packages. Tasks 

were generally not defined in a high-level package specification. If a task had to be invoked from outside 

the high-level package, an interface procedure to call the task was provided. Tasks were used primarily 

for control; they called on packages to execute the controlled functions. A good example of this type of 

design is the Kalman_Filter package (see Figures 3 and 4). 
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This philosophy was not always followed. For example, the BIM_Inteiface package was 
written before these design decisions were made, and contains a large task which is directly visible and 
which does its own processing. 

Tasks cannot be completely ignored at the system level, however. The architectural design 
had to specify the processing priority of each task. 



(2) The Architectural Design Process 

In this section, the Navigation Processor design serves as an example of the architectural 

design process. The two major LLCSCs of the Navigation TLCSC are Environment and Nav_Software 

(see Figures S and 6). The Environment LLCSC provides the interface to all external devices, while 

Nav_Software performs the navigation, alignment, quaternions, and Kaiman filtering functions. 

The first step in the architectural design was to go through the SRS and determine all the 

places where CAMP parts could be used. An annotated copy of the SRS showed where each part applied. 

The resulting parts list was used to drive the architectural and detailed designs, and maximize reuse of 

existing parts. 

The next step was to "rough out" the decomposition diagram (see Figures S and 6), struc- 

ture charts, and the Ada package specifications. See Figure 3 for a sample structure chart. Different 

approaches were used for the two major LLCSCs. The Environment LLCSC was implemented as a 

single package; the Nav_Software LLCSC was implemented as five packages, since a single package 

would have been too large. 

The top-level design went through sev. .1 iterations. In general, each iteration hid more 

data, i.e. material moved from the package specification to the body. Also, as the design developed, 

lower-level packages were created and the required functions were mapped to them. The end result of 

this process was Ada code for the package and task specifications, skeleton Ada code for the task bodies, 

the top-level decomposition diagram (see Figures S and 6), and a series of structure charts. 

The architecture was informally reviewed by the design group as it developed. The CAMP 

Program Manager reviewed the architecture twice; these reviews concentrated on the decomposition 

diagram and the structure charts. Formal walkthroughs of the high-level Ada code followed the final 

management review. 

c. Detailed Design and Code 

Detailed design and coding were combined into one phase. In some respects this phase was a 

continuation of the top-level design process. 

Each high-level package was assigned to a single designer, who was responsible for the detailed 

design, code, and headers. All design/code was walked through by the entire 11th Missile team. There 

was at least one walkthrough for each package; the larger packages (e.g.. Environment, Kalman_Filter) 

were broken down and underwent several walkthroughs. The walktliroughs sought to ensure that the code 

met the requirements, interfaced properly with other code, conformed to project standards, and had com- 

plete headers. 
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d. Unit and Component Level Test Methods 

In general, the 11 th Missile team tested both units and packages (components). Usually unit- 

and package-level tests were separate, but occasionally they were combined or the package-level test was 

skipped. Table 3 presents the decision matrix that was used to determine the level of testing that was 

required. 

TABLE 3. UNIT- AND PACKAGE-LEVEL TEST DECISION MATRDC 

Caaa 

1 2 1    3 1    « S    1 

{Condition 1 1 
I  Unit - Slnpla I Slapla | Coaplax Coaplax | 
|  Intaraotlon Nona Sinpla 1 Coaplax I Slapla Ceaplax | 
|Taata Roqulrad 1 
|  Onlt 
1 
1 

T 

Conblna 

| Part of 
I paokaga 
I taat 

* Y   I 

I  Paakaga 
1 
1 

M 1   T 
1 
1 

Part of 
unit 
taata 

T    1 

Package-level testing was not required if there was no interaction between the units in the 

package. For example, KalmanJTypes is a collection of data type definitions and operators; no data is 

stored in the package body and the units do not invoke each other. 

If the units and the interactions between them were both simple, the unit tests were folded into 
the package-level test (e.g., Alignmenl_Measurements) or the unit tests covered the package-level test 

requirements (e.g.. Quaternions). 

If the units were complex, then unit-level tests were always required. If the unit interactions 

were simple, the package-level test requirements could be covered by the unit tests (e.g., BIMJnterface); 

if complex, a separate package-level lest was required (e.g., Kalman.Filter). 

The CAMP parts were assumed to be correct and were not tested separately. They were tested 

indirectly as part of the units that invoked them. 

(1) Unit Test Approach 

The 11th Missile team designed unit tests to cover both white box and black box view- 

points. A white box test is designed with knowledge of the unit's structure. The test cases are set up to 

exercise all paths through the unit and to invoke all branch conditions. A black box test is a functional 

test that assume nothing about the unit's internal structure. It passes in a representative sample of input 

data and checks to see if the output is as expected. The Alignment.Measurements package will be used 

to illustrate these two approaches to unit testing. 

The Alignment_Measurements package (see Figure 7) takes a sequence of integrated 

velocities from the navigator, keeps and corrects running sums of them, and periodically formats the sums 

12 



into measurements and sends them (o package KalnianJFilter. Calls to control procedures (Initialize, Set_ 

Measurement_Time, and CanceLMeasurement) initialize the package, specify when a measurement is to 

be sent to Kalinan_Filter, and occasionally cancel a measurement. Integrate, Put_Reference_Velocity_ 

Integrals, and Apply_Kalman_Position_Corrections receive data needed to compute or correct the 

integrated-velocity sums. Get_Integrals returns the current integrated-velocity sums. 

with II>v_CoBput«r_Data_Iyp*a ; 
paokag* All9nm*nt_M*asurwMnta  la 

paakag« NCDT ranaaaa M«v_Coi«put«r_D«t«_Typ«»; 

procadur« Znltlalita (Inltlal_Tlma 
Rafaranaa_Altltuda 
Valoclty ~ 

In MCDT.Saoonda ; 
In MCDX.ra«t_n; 
In MCDT.Valoalty_Vaotora); 

prooadura Intagrata (Eff_Tlma_Of_Inor_Data ; In MCDT. Saoonda; 
Valoclty : In HCDT. Valoolty_Vactora ; 
Utltuda : In HCDT.raatJB"») ; 

prooadura Put_Ra£aranca_Valoclty_Intagrala 
(X_Valoolty_Intagr«T : In MCDT. raat_r» ; 
T_Valoaity_IntagrBl : In MCDT.Faat_n) ; 

prooadura »pply_Kalman_Poaltlon_Corraotlon 
(Poaltlon_Brror_X : In MCDT.Earth_Poaltlon_R«dlana; 
PoaltlonJ!rror_Y : In MCDT.Earth_Poaltlon~IUdl«n*) ; 

prooadura Oat_Intagrala (Intagratad_Val_X : out MCDT.FaatJTP ; 
Intagratad_Val_y : out MCDT.FaatJTP) ; 

prooadura Sat_Maaauraawnt_Tlma (Tlma : In NCDT. Saoonda); 

prooadura Cancal_Maaauraaant; 

and Allgninant_MaaauraBanta; 

Figure 7.  Package Alignmenl_Measurements 

A black box test would invoke the package with a sequence of control and dal.) calls, 

verify that the current sums relumed by Gel_Integrals are correct, verify that the package sends correct 

measurements to Kalman.Filter at the correct times, and verify that a measurement is not sent if it has 

been cancelled. The test designer would use the requirements specification and the Ada package 

specification to develop the tests. 
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The white box lest designer would also use the package and procedure body listings to 

generate lest cases that cover all the paths and exercise all the branch conditions. For example, the while 

box test of procedure CanceLMeasurement (see Figure 8) would call this procedure twice, once with 

measuremenLpending true and once with it false. (Measurement_Pending is stored in the package body.) 

with Knvlronmant; 
■•parata (AllgnmantJMaaaui aaianta) 
preaadura Canoal_HaaauraaM nt la 
bagin 

if MaaauramantJPandlng than 

—«and Invalid maaauraaant to tha Kalaan 
Envlronmant.Haaauraa •nta.Iara la Allgiuaant Naaauranant 

(Tlma of Allgnm Data -> Maaaur« MMnt_TiaM, 
Allgnm_Valld ■> rALSI, 
MaaaX ■> 0.0, 
MaaaY -> 0.0, 
MaaaK m>  0.0, 
VarX -> 0.0, 
VarY -> 0.0, 
VarE -> 0.0); 

—eanoal maaauranont pandlng flag 

Maaauranant_Pandlng !- FALSE; 

and if; 

and Canoal_Kaaauraawnt; 

Figure 8.  Procedure CanceLMeasurement 

The Alignmenl_Measurements test was primarily a black box (i.e., functional) test, with 

some additional test cases to cover the white box criteria, 

(2) Process 

After a unit had been walked through and approved, the unit's designer wrote the test 

procedure. Procedures were written in DoD-STD-2167 formal, and each one was reviewed by the entire 

11th Missile team. An engineer other than the unit's designer wrote the lest driver code Md executed the 

test. 

Most unit and package tests were first executed on the VAX using (he DEC Ada compiler 

(see Figure 9). This approach was originally adopted because of the problems encountered with the early 

Ada/I7S0A cross-compilers. There was an unexpected productivity benefit, however, because DEC's 

program debugging and library management tools were much better than those provided by the 17SÜA 

cross-compiler. Errors could be found and corrected much faster with DEC's tools than with the cross- 

compiler's tools. These units were then tested on a 1750A simulator or 1750A hardware. Since the code 

and the lest drivers had been checked out, these tests were primarily to debug the 17S0A cross-compiler, 

lime the software, and check numerical accuracy. 
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Some units (e.g., the 1553B bus interface) could not be meaningfully tested unless they 

were compiled by a 17S0A-targeled compiler, and so were first tested on the 17S0A Simulator. 

^X 
VAX 

Target n^ 
1750A 

Simulator 

Unit     and 
Comjponent     Tests 

1750A 
Hardware 
Open-Loop 

1750A 
Hardware 

Closed-Loop 

Int ecjrat ±on.    Tests 

Figure 9. Test Approach 

e. Integration and Hardware-in-the-Loop Tests 

The Laser Guidance group of McDonnell Douglas Astronautics Company developed the 

simulation facility used by the 11th Missile Application; the 11th Missile Application software was 

developed lo be consistent with the requirements of this facility. The hardware configurations used in 

integration and hardware-in-lhe-loop tests are shown in Figure 10. The baseline simulation setup. 

Operator Control Unit (OCU) and flight Digital Processing Subsystem (DPSS), utilized two 1750A 

processors. Because only one 1750A processor was available, the alternate breadboard/monitor con- 

figuration was used. With this alternate configuration, the lllh Missile Application software required 

minor modifications. The Guidance computer was converted from a remote terminal (RT) to a bus 

controller (EC). 

The hardware-in-the-loop tests for the Guidance CSC were successfully completed, but the 

Navigation CSC hardware-in-the-loop testing could not be performed given the inability of the 

Ada/1750A cross-compiler to generate correct Ada code for this portion of the application and the un- 

availability of work-arounds. The tests uncovered six errors in the 11th Missile Application software and 

three errors in the Ada/1750A compiler code. The Guidance CSC required 87.2% of the throughput. A 

more detailed description of the results may be found in the Software Test Report (Reference 1). 

The I Ith Missile Application testing demonstrated that given efficient and effective Ada com- 
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Figure 10.  Hardware Configurations 

pilers, the CAMP parts may be used in embedded real-time software. The CAMP parts were functionally 
correct, but, with the current Ada/1750A compilers, most genetics had to be manually instantiated (see 
Section VI). 

The 11th Missile Application CSC! is not effective flight software due to long execution lime. 
The Guidance CSC runs three times slower than a nearly equivalent JOVIAL version of the same applica- 
tion. The Navigation CSC would not have been able to run in real time. The main sources of in- 
efficiencies were Ada task rendezvous and the compiler's implementation of generics; Section VI dis- 
cusses the Ada issues in more detail. 

f. Tools 

Table 4 lists the tools used by the I Ith Missile team and the software development phases in 

which they were used. 
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TABLE 4. TOOLS USED BY SOFTWARE DEVELOPMENT PHASE 

j                          Tool 

1     ToP 
Level 

Design 
Detailed 
Design 

Unit 
Test 

Integration 
Test 

RequircnKiil* Maps X 

Menage Maps X X 

1 Decomposition Diagrams X 

Structure Charts X 

1 Digital Standard Runoff X X 

Comment Extractor X 

1 DEC Ada Compilation System X X X 

TLD VAX/I 750A Ada Compiler System X 

Compiler Conversion Utilities X X 

1 MDAC-HB I750A Simulator X 

MKROS I750A Emulator X 

(lardware-In-The-Loop Simulation X          j 
DEC Code Management System X X 

Software Development Files x x 
Development Status Database x       ! X      i 

Smart Cade Counter X        j X 

(1) Requirements Mapping Tools 

Requirements maps were used to verify the completeness of the design. These maps (see 

Table S for an example) correlated the software implementation and the requirements; they were used to 

verify that all requirements were implemented. The maps also appeared in the TLDD. The message 
maps (see Table 6 for an example) showed which element (subprogram or task) processed each 13S3B 

bus message, and served to verify that the software processed every bus message. 

(2) Design Visualization Tools 

Decomposition diagrams and structure charts were used to provide two different views of 

the software design. The decomposition diagram clearly showed the functional partitions of the software; 

the structure charts showed the packaging structure of the Ada code. 

The two visual aids are consistent, except for the data type definition packages. For ex- 

ample, package Kaiman Jypes is logically a part of the Kaiman Filter function, and is therefore shown 

below package Kalman_Filter in the decomposition diagram (see Figure 6, at the far right edge). 

However, this would have forced the Kalman.Filler and Environment packages to "with" each other, 

which would violate an Ada language rule. Therefore, package Kalman_Types is separate from Kaiman. 

Filter and appears as such in its structure chart (see Figure 3). 
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TABLE 5. NAVIGATION TLCSC FUNCTIONAL ALLOCATION 
TO LOWER LEVEL COMPUTER SOFTWARE COMPONENTS 

(Par! 1 of 2) 
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TABLE 5. NAVIGATION TLCSC FUNCTIONAL ALLOCATION 
TO LOWER LEVEL COMPUTER SOFTWARE COMPONENTS 

(Concluded) 
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TABLE 6. NAV COMPUTER MESSAGE MAP 

(Parti of 2) 

Hmmmmgm ID Mag Syabol 

IPSS-HAV -  40 Koura 
zpss-mv - 41 RÜNTPP20 
IPSS-MAV -  42 KDMXPF3D 
IPSS-HAV -  43 
IPSS-HAV -  45 TPMDPD 
IPSS-HAV - SO LTDTIHB 
IPSS-HAV -  51 HTPrZDIIHB 
IPSS-HAV -  52 HTPrSDTINE 
IPSS-HAV -  53 PTHTIMB 
IPSS-HAV - 54 TPMIIMB 
ISA  -BRD -132 APDATA 
ISA  -BSD -133 ciocr 
ISA  -HAV -     8 INCHAi. 
ISA  -HAV -     9 CTHAM 
ISA  -HAV -  10 ISSTAT 
NAV  -BSD -130 HAVDAI 

HAV -BUD -131  MAVPOSCOV 

NAV -BXBC- 1 
HAV -OOID- 1 
HAV -ODID- 2 
HAV -ISA - 3 
HAV -ISA - 4 

ATTITKXEC 
ATTIT6DID 
ATTITSDID2 
INITAT 
FRIHC 

NAV -ISA -  5  KALCOR 

NAV -ISA - 6 ISACMD 
NAV -OCO - 4 NAVSTAT 
NAV -OCO - 6 RTBIMERR 
NAV -SCP - 2 ALPHA 
NAV -8CP - 3 CORRECT 

NAV -XtM - 7 KALRLT2 

NAV -TIM - 13 KTJDIAO 

NAV -TIM - 15 

NAV -TIM . 16 VAR 

NAV -TIM - 17  PBIDIA6H0S 

NAV  -TIM  -  18 

NAV  -TIM -  19 

KALRLT1 

KAiSTER 

Kalmanjriltar. S*qu«nc«r. ltoaaurMMnt_Pr«preo«aalng 
Kalaan_rilt*r. Saquanoar. IteaauraBMnt_PrapEee*aa Ing 
Kalaan_Fllt«r.8*qu«no*r.ltoaaurMMnt_Praproaaaain9 
Kalaan_Fllt*r. S*quano«r .M«*auraawnt_PE«preo*aalng 
Kalnan_Fllt«r.S*qu*no«r.N*aavEaa*Bt_Pr*proa*aaln9 
KalnanJTlltar. Saquanaar .ttoaaur«Mnt_Praproo*aaing 
Xalaan_Fllt*r. Saquanosr, ltoaaur«Mnt_Praproa*aalng 
KalnanJTl 11 «r. Saqumoar. MaaauraawntJP raproeaa a ing 
Kaliiuui_Fllt«r.8«quano«r.ltoaauraaMnt_Pr«pcea«aalng 
Kalman_Fllt*r. Saquanear. ltoaaucaaant_Pr«proo«aalng 
Hav_Sya taai. Saquanoar 
■nvlronatant .Maaaaga_Manag—ant .NaaaagaJManagar 
Nav_9yataai. Saquanoar 
Hav_Syat«ai. Saquanoar 
Bnvlronnant. ISA. I9A_Coan_BIT_And_Nonltor 
Nav_Syataai. Saquanoar (via HaTlgatton_Oparatlona ,- 

Bsaouta_HaTlgator) 
Kalnan_Flltar. Saquanoar. 0|>data_Hanagar. - 
Sand_Corraotlon_Naaaagaa 

Nav_Syataai. Saquanoar 
Navigation.Saquanoar 
Navigation.Saquanoar 
Nav_SyataBi. Moda_Controllar 
Nav_Syatam. Saquanoar (via HarigationjOparationa.- 

Bxaoutajfavigator) 
Kalaan_Flltar. Saquanoar. 0)pdata_IUnagar. Ralnitialiia 
(initial tilt oorraetien aaaaaga) 

Kalman_Filtar. Saquanoar. Opdata_Nanagar. - 
Sand_Corraation_Maaaagaa (all othara) 

Envlrönaant. ISA. ISA_CeaM_BIT_AndJtonitor 
Hav_Syataa.Statua_aanarater 
Bnvlronmant. RT_BIM_Brror_Bandlar 
Hav_Syat«B.Saquanoar 
KalaanJTiltar. Saquanoar. Dpdata_Hanagar. - 
Sand_Corraotlon_llaaaagaa 

Kalman_FtltaE. Saquanoar. Opdata_Nanagar. - 
Sand_Corraatlon_Maaaagaa 

Kalaan_Flltar. Saquanoar. Opdata_Maaagar. - 
Sand_Corraation_Maaaagaa (P and X tanaa) 

Kalnan_Filtar.Saquanoar.Plil_q_llanagar (phi S Q tacau 
KalBan_Filtar. Saquanoar. Opdata_Managar. - 
Dpdata_And_Sand_Maaaagaa 

Kaliaan_Filtar. Saquanoar. Opdata_Managar. - 
Ratrlava_And_Propagata (P propa) 

Kalnan_Filtar. Saquanoar. Opdata_Hanagar. - 
Opdata_And_Sand_Naaaagaa (P updataa) 

Kalman_Flltar.Saquanoar.Phi_Q_Managar (phi propa) 
ICalman_riltar. Saquanoar. Dpdata_Managar. - 
Ratrlava_And_Propagata (PCX propa) 

Kalnan_Filtar. Saquanoar. Opdata_Nanagar. - 
Sand_Corraotlon_Maaaagaa 

Kalman_Fllt«r. Saquanoar. t>pdata_Managar. - 
Ratrlava_And_Propagata (X propa) 

Kaliiian_riltar. Saquanoar. Opdato_Managar. - 
Dpdata_And_Sand_Maaaagaa (X updataa) 

Kalman_Filtar. Saquanoar. lJpdata_Nanagar. - 
Sand_Corraotlon_Maaaagaa (oum arrora) 
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TABLE 6. NAV COMPUTER MESSAGE MAP 

(Concluded) 

Maaaaga ID Mag Synbol    Bandlad By 

MAV  -TIM -  21     QDIAOHOST       Kalman_riltar.Saquanear.Phl_Q_llana9ar   (Q propa) 
Kalnan_nitar. Saquancar. OpdataJManagar. - 
Ratrlava_An<l_Propagata   (V propa) 

Kaljnan_Flltar. Saquancar. Phl_Q_NanBgar 
Kalman_Flltar. Saquanoar. Opdata_Hanagar. - 

Dpdata_Aad_Sand_Maaaagaa 
Kalaan_riltar.Saquanoar.Phl_Q_IUnagar   (phi  • Q propa) 
KalBanjriltar. Saquancar. Opdata_Managar. - 

Opdata_And_Sand_Maaaagaa via 
Kalaan_riltor. AllgnmantJDlaerataa. Put_P 

Nav_Syataa.Moda_Contrellar 
Environaant.Maaaaga_Managar via Syatan_Controllar 
EnTlronaant .MaaaagaJHanagar via Syataa^Controllar 
Hav_SyataM. Moda_Cont rollar 
Nav_8ya taai. Moda_Cont rellar 
Nav_8yataa.Neda_Controllar 
KalBan_Flltar. Saquanoar. MaaauraMint_Praproaaaaln9 
Kalman_riltar. Saquanoar. MaaauraaMnt_Praproeaaalng 
Kalaan_riltar. Saquanoar. Maaauraaiant_Prapreeaaalng 

NAV -TLM - 23 FDIDIAOHOS 
MAV -TIM - 26 XTMEAS 

MAV -TIM - 28 rSOMDIAQ 
MAV -TIM - 33 RALPBt 

OCD -MAV - 2 HAVCMD 
OCD -MAV - 82 PREP DNNLD 
OCD -MAV - 84 START APPL 
OCD -MAV - 86 IMIOHDAIM 
OCD -MAV - 87 IMD6HDAUI 
OCD -MAV - 92 HKIILXVARM 
3CP -MAV - 39 DOP TIMB 
SCP -MAV - 40 
TPM -MAV - 43 TPMOPD 

(3) Ducumentatiun Tools 

The 11th Missile team used Digital Standard Runoff (DSR) to formal the top-level design 

document (TLDD) and the test procedures document. The bulk of the TLDD was extracted from the code 

headers and formatted for DSR by the Top-Level Design Comment Extractor (see Volume I, section 

11.2.e(4)). a tool developed by MDAC-STL. 

(4) Ada Compilers 

The I Ith Missile team had access to two different VAX/17S0A cross-compilers; these will 

be referred to as "Compiler A" and "Compiler B". This is partly to protect the compiler vendors' 

proprietary information, and partly because the information presented here will (hopefully) soon be out- 

of-date as improvements are made to the compilers. 

Neither compiler handled generics well enough to use the CAMP parts without modifica- 

tion (see Volume 1, section VI). For this reason, and because DEC'S Ada Compilation System (ACS) 

provides far belter library management and code debugging tools, the I Ith Missile team used the DEC 

Ada compiler extensively. The DEC compiler was the only one used during the design phases, and was 

used with a 1750A cross-compiler during unit testing (see Section II.2.d). In the top-level design phase, it 

was particularly useful when designing (he task bodies, since the compiler automatically checked task 

accept statements and subprogram calls for consistency with the task entry and subprogram definitions, 

respectively. In both design phases, code had to compile before it was walked through. "Compiler B" 

was used for the I7S0A version of the imit tests and for the integration tests. 
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Using three Ada compilers meant developing three versions of some of the code. The 

compiler-specific code consisted primarily of pragmas and representation specifications. The 11 Ih Mis- 

sile team did this by writing all three versions in one file and commenting out the lines that did not apply 

to the DEC compiler. Utility programs converted the files for use by another compiler by commenting 

out the DEC-specific statements and activating the statements for the specified compiler (see Figure 11). 

(5) Test Tools 

Most unit tests were executed on the MDAC-HB 1750A Simulator, a FORTRAN program 

that simulates the operation of a 17S0A chip. Using this program, the 11th Missile team was able to run 

those unit tests that did not use an external interface (i.e., the 1SS3B bus or the barometric altimeter port). 

The simulator is quite slow, so some computation-intensive unit tests were executed on the 

MIKROS 17S0A Emulator or on a 17S0A breadboard from the original 11th Missile project. The MIK- 

ROS is a SEAFAC-certified 17S0A implementation that is designed to be a co-processor with an IBM 

PC/AT. Programs were downloaded from the IBM PC to the 17S0A target and executed on the 1750A 

hardware. The breadboard is built around an MDC281 implementation of the 1750A architecture and 

contains 128K of memory. For unit tests, software was downloaded and controlled from a VAX 11/780 
via a 1750A Monitor. 

The integration tests were executed on the hardware-in-the-loop simulation (see Section 

II.2.e). 

(6) Other Software DevHoprr.ent Tools 

Two other tools used 'iiiring software development were Software Development 

Notebooks (SDNs) and the DEC Code Management System (CMS). 

Generally, there was an SDN for each high-level package, but if it was large (e.g.. 

Environment), there could be separate SDNs for its sub-packages. There were approximately forty 11th 

Missile SDN's. A module's Software Development Notebook (SDN) contained the following: 

• The SRS pages that applied to the module 

• The Ada code 

• The test plan pages that applied to the module 

• The test driver's code 

• The lest results 

CMS is a configuration management tool, which served as the central source code library 

for the 11th Missile and kept track of code modifications. Only one person could reserve a file from CMS 

at a time, thus ensuring that one person's revisions could not be lost due to a file being overwritten by 

another person. CMS is integrated with the Ada compilation system (ACS) to the extent there is an ACS 

command to recompile all "out of date" modules (object code older than the corresponding source code in 
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**** DEC Version ♦♦** 

-"A" 

"B" 
"A" 

foe lnltat_m«aaag*a  ua* 
raaord 

werd_aeunt at 0*RP. mtoxmg»_mxitm_fr_iiozdi rang* 
■ourca at 1*RP. «toraga_unlt» _par_ifOEd rang* 
daatlnatlon at 1*RP. ■toea9a_unlta_par_word rang* 
iii«aaaga_nunbar at 1*RP. atoraga_unlta_pac_word rang« 
af£aotlva_tlBa at 2*RP. ateraga_unlta_p*r_word rang« 
lnlt_quat_0 at 4*lU?.atoraga_unlta_par_word rang« 
lnlt_quat_0 at 4*RP.atoraga_unita_par_word ranga 
lnlt_quat_l at 5*RP. atoraga_unlta_j>ar_word rang« 
lnit_quat_l at 5*RP. ateraga_unlta_p«r_word rang« 

and raoord; 

for lnltat_maa«aga»'alza uaa BI .m«aaaga_ali*;   —VAX 
for lnltat_maaaagaa'alza ua« BI .ra«aaag«_alza'f32; 
for lnltat_m«aaagaa'alza ua« BI.m«aaag*_alz«; 

.13 

. 3 

. 7 

.15 

.31 

.15 
■ 15 
.IS 
.15 

♦*** "B" Version *♦♦* 

for lnltat_m«aaagaa uaa 
raoord 

word count          at 0*RP. atorag«_unlta_p«c_word ranga 0. .15 
aouro«                   at 1*I<P. atoraga_unlta_p«r_word ranga 0. 
daatlnatlon        at 1*RP.atorag«_unlta_j>«r_word ranga 4. 
maaaag«_nunb*r at 1*RP. atoraga_unlta_p«r_word ranga • . 
affaotlv« tin» at 2*n. atoraga_unltajp«r_word ranga 0. 
lnlt_quat_0        at 4*RP. atoraga_unlta_p«r_werd ranga 0. .."B" 

— "A" lnlt_quat_0        at 4*RP. atorag«_unlta_p«r_word ranga 0. 
--"A" lnlt_«iuat_l        at S*RP. atoraga_unlta_par_woEd ranga 0. 

lnlt_quat_l        at 5*n. atocaga_unlta_p«rj>erd ranga 0. ._"B" 
and raoord; 

—VAX for Inltat maaaagaa' alz« ua« BI.m«aaag«_alza; 
for lnltat_n«aaagaa' alza uaa BI.m«aaag«_aiza+32;   —"■" 

— "A" for lnltat_m«aaag«a' alz« ua« BI.m«aaaga_alc«; 

**** "A" Version ***♦ 

--"B" 

.-"B" 

for lnltat_maaaag«a uaa 
raoord 

word_count at 0*RJP 
aourc« at 1*RP 
daatlnatlon        at 1*RP 
n«aBag«_nunb*r at 1*RP 
affaotlva_tliM at 2*RC 
lnlt_quat_0        at 4*FP 
lnlt_eiuat_0 at 4*RP. 
lnlt_quat_l        at 5*W. 
lnit_quat~l at 5*RP. 

and raoord; 

atoraga_unita_par_word ranga 
atoraga_unlta_par_werd ranga 
ator«g«_unltB_p«r_word rang« 
atorag«_unlta_p«r_woEd rang« 
atorag«_unlta_p«r_word ranga 
atoraga_unlta_par_wecd ranga 
atoraga_unlta_par_word ranga 
atoraga_unlta_p«E_word rang« 
atorag«_unlta_p«r_word ranga 

-VAX       for  lnltat_m«aaag«a'alz« ua* BI.m«aaag«_aiz«; 
-"B"        for  inltat_m«aaag*f'alza ua* BI.m«aaag*_alz*'f32; 

for  lnitat_ni*aaag*a'alz* ua* BI.m*aaag*_alz*;   --"A" 

0. .15; 
0.. 3; 
4.. 7; 
S..15; 
0..31; 
0..15; 
0..15; 
0..15; 
0..15; 

-"A" 
-"A" 

Figure 11.  Code for Three Compilers Combined in One File 
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CMS). CMS was also used for configuration control of the Top-Level Design Document, the Test Plan, 

the Test Procedure, and the Final Technical Report. 

(7) Management Touls 

A development status database, implemented using ORACLE (a commercially available 

relational database), helped track the status and size of the 11 Ih Missile software. Each developer was 

responsible for updating the database as appropriate. A program automatically generated a weekly status 

report and sent it to all the developers and management. 

The "smart" code counter (see Volume I, section II.2.e(5)) was used to count the individual 

modules for the software size fields of the database. An ORACLE command file calculated the total 

software size. 
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SECTION III 

EVALUATION OF THE CAMP PARTS 
AND 

THEIR USE IN THE UTH MISSILE APPLICATION 

Two versions of the 1 llh Missile Application were designed and tested. The first used the CAMP 

parts, and is referred to as the "Parts Method". This was a complete implementation of the 11th Missile 

requirements. The second implementation used the CAMP parts and parts composition system (PCS) and 

is covered in Section IV; it is referred to as the "PCS Method". 

I. PRODUCTIVITY 

During the 11th Mbsile Application development, effort data was maintained in order to determine 

the effect of CAMP parts and PCS usage on productivity. In analyzing this data, one very important issue 

was highlighted: Use of Ada for RTE applications requires mature, highly optimized compiler* Al- 

though great strides have been made in the development of Ada compilers in general — the DEC VAX 

compiler is a good example of this — Ada cross-compilers for RTE applications are not yet fully mature. 
This situation is similar to the one that existed several years ago when high-quality Ada compilers for 

non-RTE targets were hard to come by. This is characteristic of the cyclic development of technology in 

general. As the demand and need for higher quality and greater efficiency in Ada cross-compilers in- 

creases, compiler developers will find increasing incentive to expend the resources needed to improve 

their products and incorporate the features that the 11th Missile team found to be so important for 

developing effective RTE applications. 

With this in mind, it is not surprising that the 11th Missile development team spent a significant 

amount of time debugging the 1750A cross-compiler. The CAMP data indicates that with a mature 

compiler, a productivity improvement of up to 15% was possible using the CAMP parts. This figure is 

based on the adjusted testing hours shown in Table 7. Adjustments were based on two factors. 

1. There was a disproportionately large lest effort due to the immaturity of the Ada/1750A compiler. 

Of the 1S3 errors discovered during testing, 96 were compiler errors and 57 were errors in the 11th 

Missile code or the CAMP parts. Based on this, it seems reasonable to assume that half the test 

time was spent debugging the compiler. 

2. Again, because the Ada/1750A cross-compiler could not generate correct Ada code for portions of 

the Navigation CSC, and because adequate work-arounds for the problems did not exist, testing of 

the Navigation CSC was not completed (see Section VI). At the end of the project, it was es- 

timated that another 240 hours would be required to fully test this CSC once the compiler 

generated correct code. 
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Therefore, the adjusted lest effort estimate is: 

Test_Effort = 0.5 x 4779 hr + 240 hr = 2630 hr 

As a cross-check, this is 45% of the adjusted total effort, which is roughly in line with the 40%-design/ 

20%-code/40%-tesl rule of thumb. 

The raw data, without the adjustment for compiler immaturity (i.e., if all of the time spent debugging 

the compiler is carried as a cost of using the parts), would actually indicate a productivity decrease of 

18%. One of the most obvious areas of the compiler's immaturity was in its inability to handle the 

complex, though perfectly standard, Ada generics used extensively in the CAMP parts. 

TABLET. 11TH MISSILE EFFORT 

Effort (houra) 

Phaia Actual 

708 

Adjuatad 

708 Raqulranmnta 
Archltaotural Daalgn 863 883 
Dat. Daalgn C Coda 130« 130« 
Taatlng 4779 2630 
Othar 371 371 

Total 8047 5898 

Table 8 shows the size of the 1 llh Missile software in both lines-of-code (LOC) and Ada statements. 

The "generated" code comprises two sparse matrix operators that were generated using portions of 

preliminary versions of the CAMP parts composition system Kaiman Filler Constructor. Parts statement 

counts are estimated from the overall ratio of statements to LOC for the parts (0.634 slalements/LOC). 

The "other reused" test software is FORTRAN and Harris assembler code used for the hardware-in-the- 

loop tests. It was estimaied that there were 0.9 slalements/LOC for this software. Table 9 shows the 

actual productivity. 

TABLE 8, 1ITH MISSILE SIZE - PARTS METHOD 

Linaa Stata- 
of Coda manta 

Oparatlonal Coda 
Ma* 15708 8C97 
Oanaratad 1106 471 
Mod. Parta 3»- 456 
Part« 3911 2480* 

Total 21C24 1210« 

Taat Softwara 
Na« 19752 12605 
Parta 1114 70«' 
Othar Rauaad 14544 13090* 

Total 35410 2S401 

* Batlmatad 
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TABLE 9. 11TH MISSILE PRODUCTIVITY-PARTS METHOD 

Haw All Maw All 
Oparatlonal Oparatlonal Oavalopad Davalopad 

LOC/Work-Month 304.5 419.2 687.4 1105.7 
Statt/Work-Month 166.5 234.7 413.0 746.5 
Work-Houra/LOC 0.51 0.37 0.23 0.14 
Nork-loura/Stat 0.93 0.6« 0.3« 0.21 

CAMP ports constituted 18.1% of the Parts Method implementation of the 11th Missile code and 
3.1% of the test code (see Table 8). Using the adjusted effort as a basis, the 11th Missile developers 
saved 896 work-hours, 15% of the development effort, by using the CAMP parts. Table 10 compares the 
adjusted effort with the estimated effort required had the parts not been used. 

TABLE 10. EFFECT OF PARTS ON 11TH MISSILE EFFORT 

Effort (houra) 

Adjuatod Eatlaatad 
With Without 

Phaaa Part a 

708 

Parta 

Raqulramanta 708 
Arohitaatural Daaign 883 883 
Dat. Daaign 1 Coda 1306 1604 
Taatlng 2630 3228 
Othar 371 371 

Total 5898 6794 

Effort Savad : 896 houra 

Productivity la^rovamant: 15% 

The increased effort that would have been required for the detailed design and coding phase had the 
parts not been used was estimated as follows: 

nn n        DD_Effoit-DD_Gen Effort 
DD_Rate = —■ 

DD Rate = 

NewjCode + ModjCode 
1306/ir-40/jr 

15708 LOC +897 LOC 

DD_Rite = 0.0762 hr/LOC 

DD_Saved = DD_Rate x PartsjCodc 

DDJiaved = 0.0762 hrlLOC x 3911 LOC 

DD_Sa\>ed = 298 hi 

where       DD_Rate = Detail design and code productivity, liours per line-of-code 
DD_Effort = Total detail design and code effort, hours 
DD_Gen_Effort = Estimated effort to generate code, hours 
New_Code = New operational code, lines-of-code 
Mod_Code = Modified parts code, lines-of-code 
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Parls_Code = Parts code, lines-of-code 
DD_Saved = Detail design and code effort saved, hours 

This estimate is conservative because il assumes that it look as long to code the modified parts as it 
did to design and code the new software. 

A similar calculation for the increased effort that would have been required to test without the parts 
yields: 

Test_Effort 
Test_Rate = 

Test_Rate = 

NewjCode + ModjCode + Gcn_Code 

2630 hr 
15708 LOC + 897 LOC + 1108 LOC 

Test_Rate = 0.148 hrfLOC 
Test_Saved_Op = Test_Rate x PartsjCode 
TestJavedjOp = 0.148 /»/LOC x 3911 LOC 
TestJSavedjOp - 579 hr 

where       Test_Rate = Test productivity, hours per line-of-code 
Tesl_Effort - Total test effort, hours 
Gen_Code = Generated code, lines-of-code 
Test_Saved_Op = Test effort saved due to parts in operational code, hours 

However, part of the test code was itself parts. Adjust for this as follows: 

*•     r     J Test Code _     „      . _ TestJSaved =  ;   ~  — ■^-r- * TestJavedjOp 
New_Test_Code + Reused_Test_Code 

*     r     . 35410 LOC „„. Testjaved - ——; ———.„,, , ^^ x 579 hr 
19752 LOC + 14544 LOC 

Test_Saved = 59S hr 

where       Test_Saved = Test effort saved, hours 
New_Test_Code = New test code, lines-of-code 
Reused_Test_Code = Reused test code, lines-of-code 
Test_Code = Total test code, lines-of-code 

New, modified, and generated code are included in the testing "rale base" because all of this code 
was unit tested; the parts code was not. There is a small error in this calculation because part of the test 
effort was devoted to debugging parts. The magnitude of the error isn't known, but is certainly less than 
100 hours. 

The actual development effort was 8047 hours. It may be argued that the time spent debugging the 
compiler was a cost of using the parts: 

• If the CAMP parts had not been used, complex gcncrics would not have been used; 

• if complex generics had not been used, fewer compiler problems would have been encountered; 

• If fewer compiler problems had been encountered, total effort would have declined. 
It is difficult to assess Just how much additional lest time was due to compiler problems, and how much 
of that additional time would nol have been required if the parts were not used.  If all of the estimated 
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compiler test lime is charged as a cost of using the parts, then there as an 18% decrease in productivity, 

computed as follows: 

_    .    . .    , Estimated EffortJVithout_Parts    , _ 
Productivit)' Improvement" : -—^ .., .   „ 1.0 

ActualJEffortJ/ithJParts 

Productivity ^Improvement - —— - 1.0 

Productivity improvement = - 0.18 

It is clear that an immature compiler will negate the benefit of using the CAMP parts "as is". 

The above discussion does not address the other costs of using parts. For example, some cost is 

incurred in the requirements and design phases since the software designers must identify the parts that 

may be used. Data was not kept on these costs during the 11th Missile Application development since the 

lllh Missile developers were somewhat familiar with the parts and were in close proximity to the parts 

development group. Some researchers have postulated the cost of reusing parts to be in the range of 4% 

to 10%. 

2. PARTS: WHERE THEY WERE USED 

CAMP parts comprised about one-fifth of the flight software (see Table 8). However, the percentage 

of parts varied widely between the LLCSCs (see Figures 12 and 13). These figures clearly show that the 

interface to the "outside world" is a major area for which there are few CAMP parts. The Message. 

Processing and lntcrnal_Bus LLCSCs of both processors are large and composed almost entirely of new 

code. Message_Processing converts data to or from a format compatible with a MIL-STD-1SS3B bus. 

lnternal_Bus controls tiie hardware interface to the bus. 
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U.CSC Parts   New 

Envlronmant I1CSC 
Baro_AMm«t*r     10 

OCU 

TIM 

ISA 

SCP 

BB 

M»«Bur»menH 

InttmaLBui 

Sytt«m_Clock 

LocaLCIock 

CPU 

0 

128 

0 

0 

0 

0 

0 

56 

58 

0 

52    | 

133   ] 

409 |—| 

254 

42 

79 

119 

781 

0 

0 

38 

MnMg«_Proc   138    4053 

M*tn_M«nager  124       52 

Navigation U.CSC 
Nav_SyBl«m        0 

\ 

503 

Quaternions       50       191   ] 

Nav_Ops 1727   2500 

Allgn_M«as 0      213 

Kaiman Pillar 1522 4714 r^^~ 

U£SC Put»   Ntw 

Intarnal But 0 740 

MessiflsProc 141 975 

Mattof^Tlme      56 0 

CPU 0        3» 

QukJ.Cpt 129a     1739 

P 

Systttn Op Data 0 

CtuWCompular 0 

Mtm.Managw    52 

34 

49 

124  I) 

i   i   i   r I   I   I   I 
0 1000        2000 3000        4000        5000        8000 

Una* of Cod* 

Figure 12.   NAV Computer Parts Usage 

I    I    I    I    I    I    I    I    I    I 
1000        2000 3000        4000        5000 

Llaaa et Cod* 

6000 

Figure 13.   GUID Computer Parts Usage 
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The applicable parts were primarily designed for navigation, guidance, and Kaiman filtering. The 
figures show that most of the parts code is indeed concentrated in the Navigation_Operatlons, Kaiman. 
Filter, and Guidance.Operations LLCSCs; however, parts comprise less than half of each of these 
LLCSCs. New code in these three LLCSCs was needed primarily to provide type definitions and 
operators, sequence calls to basic functions, and perform functions for which parts are not available or in 
a manner different from the available parts. New (non-parts) Navigation_Operalions code was developed 
to perform the following functions: 

• Define types and operators between them. Most of the operators are scalar multipliers and dividers 

(e.g., I'eel / sec => feet per second). This code is a modification of the Basic_Data_Types part, but 

since most of it was written by the 11th Missile team, it is counted as new code. 

• Sequence calls to the navigation functions. The parts provide basic navigation operations (e.g., 

compute Coriolis acceleration, update velocity), but do not provide a higher level procedure to call 

them. 

• Compute a bias altitude for the barometric altimeter 

• Incorporate Kaiman corrections 

• Implement a third-order barometric-altimeter filler 

• Multiply two coordinate-transform matrices and transpose the result 

31 



The new Kalman_Filcer code was developed to perform (he following functions: 

• Define types and operators between them. Most of the operators are sparse-matrix operators, some 

of which are quite large. 

• Sequence calls to the Kaiman filter functions. The CAMP Kalman_Update part did not meet IIth 

Missile requirement to handle more than one type of measurement. 

• Initialize and integrate the system description (F) matrix. 

• Initialize the covariance (P) matrix. 

• Define the system noise (Q*) matrix. 

• Perform measurement reasonableness tests. 

• Compute measurement sensitivity (H) matrices. 

• Compute Kaiman corrections for the navigator and for other subsystems of the 11th Missile, and 

maintain a running sum of the corrections. 

• Compute whether or not an alignment maneuver is needed, and whether or not the navigator is 

aligned. 

• Provide interfaces to other subsystems. 

The new Guidance_Operalions code performed the following functions: 

• Define types and operators between them. As with Navigation.Operations, most of the operators 

are scalar multipliers and dividers. This code is another rewrite of Basic_Data_Types. 

• Sequence calls to the guidance functions. Once again, the parts provided the basic operations, but 

did not provide a sequencing procedure. 

• Implement a modified first-order filter. The modification allows the user to specify the initial "past 

values" stored in the filler. 

• Implement a lateral-directional "autopilot" that drives a pilot's display instead of rudder and 

ailerons. 
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3. PARTS: USED, MODIFIED, UNUSED, AND WHY 

By the end of testing, the 11th Missile software existed in two versions: one considered the baseline 

and the other a work-around necessitated by compiler problems (see Section VI). The "baseline" version 

was the software as it was designed and implemented, assuming a trouble-free compiler. The second or 

"tested" version was the baseline version after making the many modifications required to work around 

compiler problems. 

The tested version did not differ functionally from the baseline version. However, many times, a 

compiler deficiency forced the 11th Missile team to search for alternate means of accomplishing a given 

function. This allowed testing to proceed despite compiler problems. 

The following sections explain the CAMP parts usage in both the baseline and tested versions of the 

11th Missile Application, 

a. Baseline Version 

The 11th Missile baseline flight software used 112 of the 453 parts (24.7%); 96 directly and 16 

with modification (see Table 11). A complete list of the parts and how they were used is included in 

Appendix A. Most of the CAMP parts were used in three LLCSCs: Navigation_Operations, Guidance. 

Operations, and Kalman.Filter (see Table 12). The following data pertains to the use of CAMP parts in 

the baseline code, 

TABLE 11. SUMMARY OF CAMP PARTS USAGE - PARTS METHOD 

j      Part« Daad »6 
1      Part« Oaad with Modification 16 

Part* Mot uaad 

Oaad 24.7%  of Parta 

341 

453 

Oaad 23.1% of Parta  Llnaa-of -Coda         [ 

(I) Paris Modified 

Table 13 lists the sixteen parts thai were modified. The reasons for modifying the parts are 

discussed below. 

• Basic_Data_Types: Although il can be compiled, it is not intended to be used "as is". It contains 

only the types and operators needed to instantiate the navigation parts and it declares all floating- 

point types System.Max.Digils. Any application will need to define additional types and operators 

and specify the actual precision desired for each type. The 11th Missile team created two versions 

of Basic_Dala_Types, one for Nav (Nav_Compuler_Data_Types) and one for Guid (Guidance. 

Data_Types). 

33 



TABLE 12. SUMMARY OF CAMP PARTS USED 

Part 

Baalo Data Typa« 

Abatraet Procaaaaa 
Standard Trig and Pelynemiala 

Coordlnata Vactor Matrix Algabra 
and Oanaral Puzpoaa Math 

1(0372 Blllpaeld 

Cn—on C Nandar-Aclanith Navigation 
Dlraotlon Coalna Matrix Oparatlona 
Oanaral Vaator-Hatrlx Algabra 

Kaiman Flltar 
Abatraat Data Strueturaa 

Quatamlon_Oparationa 
Waypolnt Staarlng 
and Gaomatrlo Oparatlona 

Signal Prooaaalng 
Cloak Bandlar 

Onlvaraal Conatanta 

Convaralon factora 
and Dnlt Convaralona 

Bua Zntarfaoa 
Extamal Tom  Convaralon 

Nuaibar 
Nhara Daad Oaad 

NavlgatlonjOparatlona 1 
Ouldanaa_0paratlona 
All taaka 1 
Navigatlon_Oparatlona 22 
Ouldanaa_0paratlona 
Navlgatlon_Oparatlona 11 
GuldanaajOparatlona 
Mavlgatlen_Oparatlona 3 
Ouldanoa_0paratlona 
NavlgatlonjOparatlona 1« 
Navlgatlon_Cparatlona 14 

11 
Navlgatlon_Oparatlona 

8 
MaBorfJManagar (MCO) 3 
Kalauui riltar 
Quatamlona 2 
Guldanaa_Oparatlona • 

GuldanaajOparatlona 5 
SyatM*_TlMa (MCO) 1 
Local Tim 
NavlgatlonjOparatlona 1 
ChildaaaajOparatlona 
Maaaaga Managar (NSO) 
Maaaaga_Managar (NCO) 5 

BIN Intarfaoa (NfiO) 1 
Bareawtrlo Altlaatar 1 
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"Nhara Oaad"   la tha LLCSC which Inatantlataa or laporta tha part. 

TABLE 13. CAMP PARTS MODIFIED 

Baalo_Data_Typaa 
H0ST2~Blllpaold_Natrlc_Data 
NOS72~Blllpaold~BnglnMrlng_Oata 
Standard_Trlg 

Sin 
Coa 
Sln__Coa 
Tan 
Arcaln 
Aroooa 
Arcaln_Arccoa 
Arctan 

Ganaral_Purpoaa_Math 
Squara_Root 

Slgnal_Proeaaalng 
FlrBt_Ordar_PHtar 

Naypolnt_Staarlng 
Croaatrack_And_Baadlng_Error_Oparatlona 

Bu»_Intar£aca_Part« 
Abstract Procaaaaa 
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• WGS72: These parts import Basic_Data_Types. The metric part was changed to import Guidance. 

Data_Types and the engineering (English) part was changed to import Nav_Computer_Data_ 

Types. Constants not used were deleted. 

• StandardJTrig: This is another example of a part not meant to be used "as is". The version supplied 

with the CAMP parts invokes the VAX Math Library. Any non-VAX application will have »o 

rewrite the entire package body (except for function Arctan2) to invoke trigonometric functions 

appropriate for that application. These functions will normally be Polynomial parts. In addition, 

most applications will need to invoke Reduction.Operations to map the input to the domain sup- 

ported by the selected polynomials. Most sine polynomials, for example, are accurate over the 

domain [-0.5pi <= x <= O.Spij. If the input is outside that domain, an input within it that has the 

same sine must be computed. The 11th Missile Application required two versions of Standard. 

Trig, one for single-precision floating-point and the other for extended-precision (see Table 14). 

• GeneraLPurpose_Math: The Sqrl function invokes the VAX Math Library. It was changed to use 

the modified Newton-Raphson square-root function from the Polynomials package. 

• Signal_Processing: Firsl_Order_Filter was modified so that the initial past values stored in the 

package body could be specified. This is required to avoid a control transient when the autopilot is 

initialized. 

• Waypoinl_Steering: Crosslrack_And_Heading_Error_Operations was modified to use two- 

parameter arctangents instead of single-parameters ones. This was required to avoid floating-point 

overflow when heading error was near +90 degrees. First_Order_Filter and Crosstrack_And_ 

Heading_Enor_Operations are the only parts that were designed to be used "as is" that had to be 

modified. 

• Bus_Interface_Parts and Abstracl_Processes: These are schematic parts, i.e.,they serve as a guide to 

the implementor (see Volume I, Section I.2.a). 

TABLE 14. POLYNOMIAL PARTS USED FOR TRIGONOMETRIC FUNCTIONS 

Function 

Slna 
Coalna 
Tangant 
Arctangant 
Arcalna 
Arccoalna 

Polynomial 

Slngla-Draolalon Extandad-Praclalon 

Baatlnga.31n_R_4tann 
Baatlnga.Coa_R_4tann 
Baatlnga. Tan_R_4tarTn 
Baatlnga.Arctan_R_«tan« 
Flka.AroalnSStaem 
Flka. Arcooa_9_6taxin 

Baatlnga.Sln_R_Stain 
Baatlnga.Coa_R_5tatm 
Baatlnga. Tan_R_Stam 
Baatlnga.Mod_Arotan_R_BtanB 
Flka.Aroaln_3_6tarm 
Flka. Arcooa_3_6tani« 
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(2) Parts Not Used 

Over three-quarters of the CAMP parts were not used by the 11th Missile Application (see 
Table 11). The primary reasons are (1) the 11th Missile Application did not implement all the functions 
for which parts are designed, and (2) the parts provide duplicate implementations of some functions both 
in the baseline and tested versions (see Table 15). A complete list of the parts not used is part of 
Appendix A. 

TABLE 15. SUMMARY OF PARTS NOT USED BY 11TH MISSILE 

142 Not applioabl« 
179 Duplloat« 
20 Inoonpatlbl« 

341 

A part is "not applicable" if it implements a function not required by the 11th Missile (e.g., 
logarithm, Radar_Aliimeter). A part is "duplicate" if it implements the same function as a part that is 
used by the 1 llh Missile. For example, there are many parts that compute the sine of an angle. All sine 
parts not used were counted as duplicates. A part is "incompatible" if it performs a function required by 
the 11th Missile, but was not used. The incompatible parts are further discussed below and are sum- 
marized in Table 16. 

The 11th Missile team chose statically sparse representations of some Kaiman filter 
matrices. This required writing matrix operations (e.g., multipliers, Sel_To_ldentity) tailored to the 
representations. The first eleven of the General_Vector_Matrix_Algebra (GVMA) parts listed in Table 
16 are incompatible because they duplicate the function of these statically-sparse-matrix operators. The 
remaining two GVMA parts (both named Change_Element) were not used because they could be replaced 
by simple assignment statements. They would have been used if the Ada/17S0A compiler used by the 
11th Missile team had implemented PRAGMA Inline. The Coordinate_Vector_Matrix_Algebra Set_To_ 
Zero_Vector function was not used for the same reason. 

The five Kalman_Filter parts listed were not used because they were limited to handling a 
single measurement type (i.e., a single type of measurement sensitivity matrix). The 11th Missile Ap- 
plication had to handle four types of measurements. 

Lateral_Direclional_Aulopiiol was not used because it generates rudder and aileron com- 
mands, and the 11th Missile Application was not designed to fly a missile; instead it drives a roll error 
needle for the pilot of a test aircraft. 
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TABLE 16. PARTS INCOMPATIBLE WITH 11TH MISSILE 

6*n*ral_y*ctor_Matrlx_Al9*bra 
ABA_Trana_Dynaiii_Spara«JMatrlx_S^_Matrlx 
ABA_Tr«n»_V«ctor_Sq_M«trlx 
ABA_Trans_V*otor_Saalar 
Dot_Produot_Oparatlona_R«atrlct«d 
M«trlx_Vaotor_Multlply~Onr««trlctad 
Matrlx_V«otor_MultlpXy_Raatrlctad 
Vaater_Matrlx~Multlply_R*atrlatad 
Dynamlaally_Spara*_Matrlx_Opacatlona_anaonatcalnad 

S«t_To_Zare_Matrlx 
AddToIdantlty 
Sub t r aot_rrora_Idan t Ity 
S»t_To_ldantlty_Matrlx 

Synnatrlo_Full_Storaga_ltetrlx_Op*ratlena_Conatralnad 
Changa_Claawnt 

Dlagonal_Matrix_Oparatlona 
Changa_Elamant 

Coordlnata_Vactor_Matrlx_Algabra 
S»t_To_Zaro_V«otor 

Kalin«n_riltar_Data_Typ«a 

Kalnian_riltar_Conpaat_H_Parta 
3«quantlally_0pd*t«_Covarlane«_Matrlx_And_St«ta_V«otor 
Kaljaan_Opdata 

Kaliiian_Flltar_Conpllaatad_0_Parta 
S*qu*ntlally_Dpdata_Covarlanca_Matrlx_And_8tata_Vaator 
Kjilman_Opdata 

Autopilot 
Lataral_Dlraatlonal_Autopllot 

I). Tested Version 

The set of CAMP parts used in the tested version of the flight software was identical to the set 

used in the baseline version. However, due to compiler difficulties (see Section VI), it was necessary to 

make further modifications in the tested version . Most of the changes involved using the CAMP generic 

code as templates for constructing "manual instantiations", i.e., converting the part to an equivalent non- 

generic version. Manual instantiations were necessary whenever the compiler failed in compilation or 

produced incoirect, malfunctioning code for a generic unit. The process was carried out by editing 
CAMP code via batch editing commands and inserting the modified code into the software in place of 

associated instantiations. 

Virtually all of the generic CAMP parts in the Guid_Computer software were replaced with 

manual instantiations. In the Nav_Computer, a smaller proportion of generic units required this treat- 

ment. Tables 17 and 18 list the CAMP parts which were modified by manual instantiation. 

Minor addilio a! changes were made to the CAMP Kaiman filter parts because of the need to 

reduce the use of run-time stack storage. The Propagate routine in the Error_Covariance_Matrix_ 

Manager of the Kalman_Filter_Common_Parts contained an expression which proved to quite inefficient. 

A similar problem existed in the Update_Error_Covariance_Matrix_Generai_Form routines of the 
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TABLE 17. PARTS MANUALLY INSTANTIATED IN GUID COMPUTER 

Abatraot Data Struoturaa 
Bounded FIFO Buffar 
Nonblooklng Circular Buffar 

Coordlnat« Vaeter Matrix Algabra 
Creaa Product 
Vaotor Operation« 
Vaotor Scalar Oparatlona 

Polynomial« 
Tlka Saalolrola Oparatlona 
Baatlnga Radian Oparatlona 
Modified Mawten Kaphaon Square Root 
Reduction Operation« 

Signal Broceaalng Part« 
Jkbaolute Llnlter 
Lower Llnlter 
Opper Lower Llalter 

Waypolnt Steering 
Coepute Turn Angle And Direction 
Compute Turning And Noratumlng Dlatanee« 
Croastreck And Beading Brror Operatiena 
Dlatanee to Current Waypolnt With Arcaln 
Steering Vector Operation« 
Turn Teat Oparatlona 

Kalman_Filler_Compact and KaIman_Filter_Complicaled packages. The expressions in these units con- 
tained operations over large matrix types. Unfortunately, the compiler's allocation of temporary space for 
operator results was rather primitive and very inefficient. In order to improve efficiency, the troublesome 
expressions had to be split up and evaluated over several assignment statements. This is discussed further 
in Section VI. 

4. PARTS CHANGED 

Twenty-three Software Change Proposals or Software Enhancement Proposals were written for the 
CAMP parts as a result of the 11th Missile development (see Table 19). These resulted in 62 changes to 
S3 different CAMP parts. The changes consisted of 20 additions, 34 enhancements, and 8 "fixes". 
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TABLE 18. PARTS MANUALLY INSTANTIATED IN NAV_COMPUTER 

Abatraot Data Struotur*« 
Boundad FIFO Buffar 
Nonblooklng Circular Buffar 
Unboundad Priority Quana 

Common Navigation Part« 
Opdata Valooity 

Handar Aiiauth Navigation Part« 
Coaputa Coriulia Aaoalaration 

Ganaral Vaeter Matrix Algabra 
Column Matrix Oporatlon« 

ABA Symn Tranapoaa 
Diagonal Full Matrix Add Rastrictad 
Diagonal Matrix Oparationa 
Diagonal Matrix Scalar Oparationa 
Matrix Matrix Multiply Raatrlotad 
Symaatric Full Steraga Matrix Oparationa  Conatrainad 
Vaotor Vaster Tranapoaa Multiply Raatrlotad 
Voctor Scalar Oparationa Conatrainad 

Kaiman Flltar Common Parta 
Error CoTarianoa Matrix Managar 
Stata Transition And Prooaaa Noiaa Matrleaa Managar 

Kaiman Flltar Compact ■ Parta 
Coaputa Kaiman Gain 
Opdata Error Covarianca Matrix Ganaral Worm 
Opdata Stata Vaotor 

Kaiman Flltar Complleatad B Parta 
Conputa Kaiman Gain 
Opdata Error Covarianca Matrix Sanaral  Form 
Opdata Stata Vaeter 
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TABLE 19. PARTS CHANGES AND ENHANCEMENTS GENERATED BY 
THE 11TH M'SSILE DEVELOPMENT 

(Parti of 4) 
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TABLE 19. PARTS CHANGES AND ENHANCEMENTS GENERATED BY 
THE 11TH MISSILE DEVELOPMENT 

(Pan 2 of 4) 
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TABLE 19. PARTS CHANGES AND ENHANCEMENTS GENERATED BY 
THE 11TH MISSILE DEVELOPMENT 

(Part 3 of 4) 
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TABLE 19. PARTS CHANGES AND ENHANCEMENTS GENERATED BY 
THE 11TH MISSILE DEVELOPMENT 

(Concluded) 
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SECTION IV 

EVALUATION OF THE PARTS COMPOSITION SYSTEM 
AND 

ITS USE IN THE 1ITH MISSILE APPLICATION 

The 11th Missile Application team designed and coded two versions of the 11th Missile. The first 

("Parts Method") used the CAMP parts; this complete implementation of the 11th Missile requirements 

was covered in Section III. The second ("PCS Method") used the CAMP parts composition system (i.e. 

the AMPEE system). This was not a completely new implementation as only the Kaiman filler was 

reimplemented and unit tested. 

1. PRODUCTIVITY 

CAMP data indicates that a productivity improvement of up to 28% is possible using the AMPEE 

system Kaiman Filter Constructor. Since the PCS Method was not a complete implementation and was 

not integration tested, this is a rough estimate. PCS-generated code and CAMP parts constitute 29.8% of 

the PCS Method implementation of the 11th Missile code (see Table 20). The estimated productivity 

improvement uses the estimated cost of developing the software without parts as a basis (see Section 111.1 

and Table 21). 

TABLE 20. 11TH MISSILE SIZE - PCS METHOD 

Lina* Stata- 
of Coda manta 

Operational Coda 
Ma« 14707 8206 
Sanaratad 2C80 »87 
Mod. Parts 697 458 
Parts 3946 2491* 

Total 22230 12142 

* Eatlnatad 

The reduction in the detailed design and coding phase was estimated as follows: 

DD_Saved = DD_Rate x {GenjCode + PartsjCode) - PCSjCosf 

DD_Saved = 0.0762 hr/LOC x (2680 LOC + 3946 LOC) -I3hr 

DD_Saved = 492lu 

where        DD_Saved = Detail design and code effort saved, hours 
DD_Rate = Detail design and code productivity, hours per line-of-code 
GenCode = Generated code, lines-of-code 
Parls_Code = Parts code, lines-of-code 
PCS.Cost = Cost of using PCS, hours 

DD_Rale is from Section 1II.1. The PCS_Cosl is the lime spent at the PCS generating the Kaiman 

filter, plus the time spent writing the code to interface the generated code to the rest of the Parts Method 
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TABLE 21. ESTIMATED EFFECT OF PCS ON 11TH MISSILE EFFORT 

Effort (hours) 

Eatlmatad Eatlmatad  1 
Without With     | 

j         Ph>a« Parta/CCS 

708 

Parta/PCa 

708 Raqulramant« 
Architectural D»mign 883 883 
Dat. Daalgn C Coda 1604 1112 
Taatlng 3228 2247 

|  Othar 371 371 
Total 6794 3321 

Effort Savad 1473 hour a 

Productivity Inqprovamant: 28%          j 

code (mostly renaming instantiations and types). Tims, the 13 hour cost includes some extra work, 
because a "from scratch" application would not require the interface code. On the other hand, another 
development team would not be as familiar with the PCS and the parts as the 11th Missile team; this 
would drive the cost up. 

The test effort that could be saved was estimated similarly: 

TestJSaved = Test_Rate x (Gen_Code + PartsjCode) 

Test_Saved = 0.148 hr/LOC x (2680 LOC + 3946 LOC) 

Test_Saved = %\ hr 

where       Test_Saved = Test effort saved, hours 
Tesl_Rate = Test productivity, hours per line-of-code 
GenCode = Generated code, lines-of-code 
Farts_Code = Parts code, lines-of-code 

Test_Rate is from Section UM. This estimate assumes that the parts and the PCS-generated code 
would not be unit tested. Under this assumption, none of the lest code would have been CAMP parts, so 
no credit is given for that. Also, as in Section III.l, this estimate ignores the other costs of using the parts 
and the PCS. Therefore, 28% is a ceiling on the possible improvement in productivity to be gained from 
using the Kahnaii Filter Constructor. 

2. PCS: WHERE IT WAS USED 

The Kaiman Filler Constructor was the only AMPEE system facility used. The PCS-generated code 
and the parts instantiated by it constitute 70.1% of the Kalman_Filter LLCSC (compared to 24.4% with 
the Parts Method). The new (i.e., not parts or PCS-generated) Kalman_Filter code was the same for both 
methods, with two exceptions: 

• The amount of new code that defines types and operators was greatly reduced with the PCS 

Method. The PCS generated most of the type descriptions, all of the sparse-matrix operators, and 

all of the operator instantiations. 
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• The PCS Melhod required new code to rename procedures written or instantiated by the PCS. This 

was required to make the PCS-generated code compatible with the rest of the Parts Method im- 

plementation. 

3. PARTS: USED, MODIFIED, UNUSED, AND WHY 

The PCS Method used the same set of parts as the Parts Method with one exception (see Table 22). 

The exception occurred because the PCS used a part that was written after the Parts Method code was 

designed. The new part allowed the user to instantiate a vector*scalar*vector-transpose operation, instead 

of having to write one using the vector*vector-transpose part. 

TABLE 22. SUMMARY OF CAMP PARTS USAGE - PCS METHOD 

Part« Oa«d 96 
Part« U««d with Modification 16 
Part« Not u««d 341 

453 

0««d 24.7% of Part« 
0««d 23.3% of Part« Lina«-of- •Coda 

4. PCS: PROBLEMS 

The Kaiman Filter Constructor, as currently implemented, has two major options for representation 

of Kaiman matrices: full or sparse. The full-matrix code uses less instruction memory, but more operand 

memory and is relatively slow. The sparse-matrix code uses much more instruction memory, but is 

relatively fast. In the case of the 11th Missile Application, the generated sparse-matrix code caused the 

program to exceed the 64K-word instruction memory limit imposed by the compiler. The full-matrix 

code, had it been generated, would have been very similar to the Parts Method implementation, which 

also exceeded the 64K-word operand memory limit imposed by the compiler. As a result, PCS-generated 

code was not hardware-in-the-loop tested. 

One or more options that generate code with intermediate speed and memory usage must be added to 

the Kaiman Filter Constructor. One possibility is to represent F as an array of records, where each record 

includes a set of matrix indices and the value of the corresponding matrix element (see Figure 14). 

Another project at MDAC-STL used the PCS to generate a 17-state Kaiman filler for a flight 

demonstration of a GPS aided navigation system. The application used a ruggedized MicroVAX with 

eight megabytes of physical memory. The PCS-generated sparse-matrix code worked well in this ap- 

plication. 
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typ« kBlman_*la 

typ« atataa  la 

nanta  la digit*   9; 

y_poa,               >_poa, 
y v«l,               c val. 

(x_poa, 
x_val, 

x att, 
«_aoo, 

y_att,              i~att, 
x_9yro_blaa, 
x_aoo_blaa, 

prop_l, 

y_gyro_blaa,   i_gyro_bla«, 
y_aoo_blaa,     ■_aoa_blaa, 
y_aoo_aoala(   ■_aoo_aaala, 
prop_2,             prop_3); 

1      typ« f_«laamnta la 
r«cord 

row atataa; 
1                       ool       : atataa; 
!                        valu«   : kalman_a laaianta; 
|              «nd record; 

t all«   :   oonatant   ;■ 76; 
typa f_lndloaa la naw Intagar rang« 1   . .  f_alca; 

typ» f_Biatrica« la  array f_tndlo«a  of f_«l«aMnta; 

Figure 14.  Possible New Representation of Kaiman Matrix 
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SECTION V 

EVALUATION OF ADA 
AND ITS USE IN THE I1TH MISSILE APPLICATION 

The CAMP 11th Missile Application served as a proving ground not only for the CAMP parts, but 

also for the Ada language. This section shows that Ada is effective for real-time embedded applications 

and that the "optional" features of (he language must be implemented. 

Ada was shown to be an effective language. The 11th Missile Application required only 21 lines of 

assembly code — 0.1% of the total application code. No assembly code would have been required if the 

Start-up ROM software had been designed to interface to the Ada compiler's Run-Time System. This is 

particularly impressive in view of the low-level machine-interface functions implemented. 

1. EFFECTIVENESS OF ADA FOR MACHINE INPUT/OUTPUT ■ AN EXAMPLE 

The effectiveness of Ada for low-level machine-interface functions was demonstrated by the fact 

that the Bus Interface Module (BIM) Interface was coded entirely in Ada. 

a. Description of the Bus Interface Module (BIM) Interface 

The Bus Interface Module (BIM) is a hardware device-controller comprising a Motorola 68000 

microprocessor and associated circuitry packaged on a single card. It receives and sends messages on a 

MIL-STD-15S3B data bus, places messages into I750A memory, and receives messages from the 17S0A. 

A BIM may be operated in one of two modes: Bus Controller (BC) or Remote Terminal (RT). 

A Bus Controller polls all terminals (including itself) on the bus and sends transmit and receive com- 

mands to other terminals as required. The BIM communicates with the 17S0A via a command port, 

interrupts, and direct memory access (DMA). With the exception of the command word, all data transfers 

are via DMA (see Figure 15). 

The 1750A issues commands to the BIM via a bit-mapped 16-bit output register (see Table 23). 

The register is accessed by a Programmed Output (PO) instruction; its address is 610 (for a RT) or 620 

(for a BC). Command Status (see Figure 15) is updated each time the BIM responds to a command, and 

Error Status is updated whenever there is a problem receiving a message. The two status words are 

bit-mapped and have the same format (see Table 24). Index indexes Input J'TR, an array of 16 pointers to 

input messages. When an input message is received, the BIM increments Index, then copies the message 

to the address specified by Input_PTR(Index). OutputPtr points to an output message. The BIM reads it 

when commanded to transmit a message, then reads the message. Polling_Ust is an array containing a 

polling sequence. It is used only by a BC, and only if the polling sequence is being changed. 

The 1750A addresses of Command Status, Error Status, Index, Input Ptr, Output_Ptr, and 

PoilingList, are among the items specified in a BIM Initialization Block (see Table 25). When the BIM 

is initialized, the address of the initialization block is sent to the BIM via the command port. 
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BIM 17 50A 

Comnand Raglstar -^  

(Initlalltation Block) 
Commandostatus address 
ExrorjStatus address 
Indax addrass 
Input_PTR address 
Output^Ptr address 
Polling_Llst address 

Coinnand_Status 
Error_Status — 
Index   

Input_Data address •^- 

Output_Data address ■^- 

Input_Data   

Output_Data ^. 

Polling List «6- 

Comnand 

(Initialigation Block? 
Coiimand_Statu8 address 
Error_Status addrass 
Indax addrass 
Input PTR addrass 
Output_PTR addrass 
Polllng_List address 

> ComnandJStatus 
> Error_Status 
> Indax 

Input_PTR(0) 
Input_PTR(l) 

Input_PTR(15) 
Output_PTR 

>    Input_Data 

OutputJJata 

Polling_Ll8t 

Figure 15.   BIM/1750A Interface 

TABLE 23. BUS INTERFACE MODULE COMMAND WORD 

Command Word Formal 

j     Bit(s) Field Description 

00 OD 1 => Output Data (send message)                                     j 

01 SP 1 => Stop Polling                                                           1 

02 CP 1 => Change Polling Sequence 

03 CM 1 => Change Number of Message Retries 

04 RP 1 => Restart Polling 

05 B 1 => Perform BIT 

06-09 I Initialize: 0101 for the first command, 1010 for the second 

10 RS Restart from Timeout 
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TABLE 24. BUS INTERFACE MODULE STATUS WORD 

Status Word Format 

Bit(s) Field Description 

00 PA 1 => Polling Active 

01 MM Module Mode: 0 -> bus controller, I => remote terminal 

03 MI 1 => Module Initialized 

04 CPU BIT result: 1 => CPU Error 

05 CS BIT result: 1 => Checksum Error 

06 IM 1 B> Invalid Message 

07 IV 1 => Invalid Transmit Vector Word 

08-12 RT RT associated with IM or IV 

13 TI 1 => Time-out Error 

50 



TABLE 25. BUS INTERFACE MODULE INITIALIZATION BLOCK 

1                                           BIM Initialization Block Format 

|            Word 1     Bit(s) Description 

1               ^ |     00-15 Tlnitializalion Block Word Count 

1               01 1        15 
Module Mode: 0 => BC, 1 => RT 

1               02 
|     11-15 1 Terminal ID 

1               03 08-11 Input_PTR address state 

03 j     12-15 Input_PTR processor stale                                        i 

j               04 1     00-15 Input_PTR address 

1               05 12-15 Maximum index value (length of array Input_FTR)    j 

|               06 08-11 Output_PlR address state 

1          o6 12-15 Output_KlR processor state 

|               07 00-15 Output_PTR address 

1               08 08-11 Command_Status address state                                j 

|               08 12-15 Command_Status processor state 

09 00-15 Command_Status address 

10 08-11 Error_Status address state 

|               10 12-15 Error_Status processor state                                    j 

1          n 00-15 Error.Status address 

|                12 08-11 Index address state                                                j 

12 12-15 Index processor state 

13 00-15 Index address 

14 00-15 Number of Message Retries (BC only) 

i                15 08-11    i Pollmg_List address state (BC only)                          1 

15 12-15 PollingJJst processor state (BC only)                       j 

16              | 00-15 PolIing_List address (BC only)                               | 

17 11-15    j Nunber of valid terminal IDs (BC only) 

18-18+N-l        | 11-15    | Terminal IDs (N entries, BC only) 

18+N- 18+N+M-l 00-15    j Polling Sequence (M entries, BC only)                       1 
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Input Ptr is «he most extreme example of indirect addressing in the BIM interface: triple-nested 
pointers. The top-level pointer is to the BIM Initialization Block. The block contains a pointer to 
Input_Ptr (second level), where Inpul_Ptr is an array that points to the actual message locations (third 
level). 

There are two interrupts for each BIM. The input interrupt (level 11 for BC, 13 for RT) signals 
that a message has been transferred to 1750A memory. The output interrupt (level 12 for BC, 14 for RT) 
signals that an output message has been sent over the bus and that the BIM is ready to accept another 
output message. 

b. Ada Solution to the BIM Interface 

The BIM interface presents a significant challenge to a higher-order language programmer. In 
the past, the use of interrupt handlers, a bit-mapped command port, bit-mapped status words, and pointers 
(including double- and triple-nested pointers) would have required programming in assembly language. 
Ada's access types and representation specification features made it possible to program the BIM inter- 
face entirely in Ada. 

The interrupt handlers were implemented as Ada tasks with interrupt entries (see Figure 16). 

taak Input_Intarrupt_landl*r la 

PRAGMA Priority  (11); 

•ntry Intarnpt; 
for Intarnpt uaa at  13; 

and Input_Intarrupt_Handlar; 

Figure 16.  Use of Interrupt Entry 

The command port was modeled as a record, with the bit-map defined by a record represen- 
tation clause (see Figure 17). This code example demonstrates the use of several optional features of 
Ada: change of representation (shorl_boolean and memory_states), size clauses for both scalar and 
record types, enumeration representation (init_commands), record representation, and nested represen- 
tations (both command_words and its components have representation specs). The example also shows 
the use of an Ada predefined constant to make the code compiler-independent. Using 
System.slorage.unil ensured that the representation clauses would work for either an 8 or 16 bit storage 
unit. 

The command port was accessed via package Low_Level_IO. Low_Level_IO, which was 
provided by the compiler vendor, had lo be slightly modified because the command port address (610 or 
620) is not in the legal range defined by MIL-STD-1750A 

Figure 18 shows how the BIM Initialization Block was coded. This example shows more of the 
power and flexibility of Ada. The block was coded as a variant record, with a representation clause 
specifying locations of the components.   Not shown are the type definitions of the component types 
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with ayatam; 
paokag* RapraaantatlonJParamatara la 

maaaag*_word_alza      : oonatant 
atoraga_unlta_p*r_word : conatant 

and Ilapcaaantatlon_Paramatara; 

16;  -- bita 
maaaaga_word_at>a/Syataa>.atoraga_anlt; 

paakaga BIM_Intarfaca_Typaa la 

typa ahort_bool*an la naw boolaan; 
for ahort_boolaan'alza uaa 1; 

and BIM_Intarfaca_Typaa; 

with BIM_Intarfaca_Typaa; 
wlth Rapraaantatlon_Varaawtara; 
packaga BIM_Intarfaca_Blddan_Typaa la 

paakaga BIT ranamaa BIM_Intar£aaa_Typaa ; 
paakaga RP  ranamaa Rapraaantatlon_Paranatar«; 

typa lnlt_ai iwianda 
for Inlt connanda 

for Inlt coi nda 

la (not_lnlt_amd, lnlt_cind_l, lnlt_ 
• (not_lnlt_aind "> 0, 

lnlt_o»d_l  -> 2#0101#, 
lnlt_owr2  -> 2#1010#); 

(a  uaa  4; 

*)l 

typa maniory_atataa  la naw Intagar ranga 0..15; 
for    maaiory_atataa' alaa uaa 4; 

typa aomnand_worda  la 
raaord 

output_data 
atop_polllng 
changa_polllng_aaquanca 
changa_m«aaaga_ratr 1 aa 
raatartjpelllng 
parform_BZM_BIT 
Inltlalisa 
raatart_from_tlJBaout 
mamory__atata 

and raoord; 

BIT.ahort_boolaan 
BIT.ahort_boolaan 
BIT.ahortjboolaan 
BIT.ahort_boelaan 
BIT.ahort_boelaan 
BIT.ahort_boolaan 
Inlt oomnanda 
BIT.ahort_boolaan 
maaiory_atataa 

BIT.falaa 
BIT.falaa 
BIT.falaa 
BIT.falaa 
BIT.falaa 
BIT.falaa 
not_lnlt_c 
BIT.falaa 
0; 

for aonnand_worda uaa 
racord 

output_d«ta at  0*RP. atoraga_unlta_par_word 
atop_polllng at  0*RP. atoraga_unlta_par word 
ahanga_pelllng_aaquanea at  0*FP. atoraga_unlta_j»ar_word 
ohanga_nwaaaga_ratrlaa at  0*RP. atoraga_unlta_par_word 
raatart_palllng at 0*RS.atoraga_unlta_p«r_word 
parform_BIM_BIT at  0*BP. atoraga_unlta_^ar_word 
Inltlallca at 0*RP.»toraga_unlta_jf>ar_word 
raatart_froni_tlmaout at 0*RP. »toraga_unlta_par_word 
mamory_atata at  0*RP.atoraga_unlta_par_word 

and raoord; 

ranga 
ranga 
ranga 
ranga 
ranga 
ranga 
ranga 
ranga 10 
ranga 12 

. 0; 
■ i; 
. 2; 
. S; 
. 4; 
. S; 
.   »! 
10; 
19; 

for aoinnand_worda'alaa uaa  16; 

and BIM_Intarfaca_Blddan_Typas; 

Figure 17.   Example of Record Represenlation Clause 
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within the initialization block; as with the components of Command.Word, these also had representations 

specified. In addition to representation clauses, access types were used for addresses of data objects. 

2. INEFFECTIVENESS OF ADA FOR OPERATINC; SYSTEM INTERFACE 

This section examines where assembly language was used in the 11th Missile Application. It will 

show that Ada was not effective when 

• Code must run before the Ada Run-Time System starts, or 

• Machine code must be at a specified memory location. 

Nineteen of the 21 lines of assembly code in the 11 Ih Missile Application were in module Reset. 
Sys_Enabie_ROM (see Figure 19). Tlüs module interfaces with the Start-up Real-time Multi-tasking 

Operating System (SURMOS). Reset_Sys_Enable_ROM contains both the first code and the last code to 

be executed from RAM. 

SURMOS is a ROM-resident operating system used at power-up to provide basic services: perform- 

ing built-in tests, BIM initialization and control, telemetry, and downloading the 11th Missile Application 

software to RAM. 

SURMOS was designed to interface with the original Real-time Multi-Tasking Operating System 

(RMOS)/JOVIAL implementation of the 11th Missile Application. It was used without modification for 

the Ada implementation. If SURMOS had been designed to interface with the Ada Run-Time System, it 

probably would not have been necessary to code the 11th Missile interface to it in assembly language. 

However, as written, SURMOS does not transfer control to the location expected by the Ada Run-Time 

System, nor does it leave appropriate values in the page registers. 

RAM and ROM execute in the same address space. For example, if the instruction counter is 40 

(hex), either ROM address 40 or RAM address 40 will be executei, depending on whether ROM is 

enabled or disabled. At power-up, ROM is enabled. When SURMOS is commanded to start the applica- 

tion software, it executes an instruction at location 3E to disable ROM (see Figure 20). Because the 

hardware "pre-felches" the next instruction, it will then execute the instruction at location 40 in ROM, 

which is a branch to location 40. This means the first instruction of the 11th Missile code to be executed 

must be located at address 40 (hex) in RAM. The Ada Run-Time System expects control to be trans- 

ferred to location 0. 

SURMOS does not leave the page registers in the power-on reset state, which is a 1-to-l correspon- 

dence between physical and logical memory. Since the Ada Run-Time System expects the page registers 

in the reset state, the initialization code must set the page registers. This is done in the PR_LOOP (see 

Figure 19). 

Finally, the start-up code loads the initial status (the LST INIT_STATUS instruction). This restores 

the status (interrupt mask, status word, and instruction counter) to the power-up state and results in a 

branch to location zero, which transfers control to (he Ada Run-Time System code. 

Control may be returned to SURMOS at location 44. To do this, the 11th Missile Application must 
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typ«  Initialisation Block 
(blaaod* : nodula aodaa   :■ bua ooatrellar;              1 
toxmlnal« :   BU»dbar_of_taailnala   :• 1) la 

1                          word oount :  wezd_aouat«_ranga; 
t*rBiB*l_ld_B*b •   RI_ID_Mb_oönatant   !■ X; 
tanlnal'ld- .  »T.tatmlnäl»; 
lnput_ptc«_blk_M ■aaory atataa; 
input_ptra blk »S ■aaory^atataa; 
lBpatjptra_blk~addr lnput_ptra_bloak_ptra ; 
no_of_lnput_biiffara 

*             ■             *              ^^ 

lBdu_word7 
outpat_ptr_Afl ■aa»ry_a t ata« ; 
eutpttt_ptr-»a MBery_atataa ; 
outpat_ptr_addr output_ptra_addr_typa; 
o i aaia ii l_atat-.ua_im ■■■ary_at»taa ; 
o mmmadjttmtiujn mmmn ry^atataa; 
eaaaand_atatua_addr atatua_«ord_ptra; 
•rrar_atatua_Jka ■aa»icy_atataa,- 

1                             «rror_atataa_M ■annry_atataa ; 
«rror_atatua_addr 
lnput~lndujüi 
lnput_lndas~PS 

atatua_word_ptra ; 
■aMozy^atataa; 
aaaery_atataa; 

!                           lnput_lndas~addx lBput_lndaa:_addr_typa; 
aaaa blB_Boda  la 

«ban bua aoatrollai • ■> 
ntrläa ratrlaa_typa; 
Baw_poll_ratrlai _»» ■aaary_atataa ; 
nai>_poll_ratrlai ~M ■aawry^atataa; 
naw_poll_ratrlai "addr aa«_poll_ratrlaa_addr_typa 

:• naw aa»_poll_ra brlaa bleak; 
taralnal Ida oo« nt          :   nwbar_of_tanlnala ; 

]                                        rt_lda_md_pöll_ aaq       :  BIM_KT~andjpoll_»ozda_llat; 
«ban othara ■> 

null; 
|                           and aaaa; 

and raoozd; 

for Inltlallsatlon_aiook u«a 
raeord 

«ord_eeuBt at    0*RV. atoraga_unlta_par_word ranga ..     IS; 
bla_äeda at    l*MP.atoraga_unlta_par_imrd ranga IS ..     IS; 
taxBlBal_ldjBab at    2*nP.atoraga_unita_par_word ranga 11 ..     11; 
tarslttal_ld at    2*l(P.atoraga_unlta__par_«erd ranga 12 ■.    19; 
lnput_ptr a_bl k_M at    3*RP.atoraga_unlta_par_«ard ranga ..    11;        I 
lnput_j>tra  blk »• at    3*RP.ateraga_unlta_jpar_aerd ranga 12 ..    IS; 
Inputjptra_blk_addr at    4**P.atoraga_anlta_par_aerd ranga ■ ■    IS; 
ne_of_lnput_buffar« at    5*M>.atoraga_unlta_par_irord ranga 12 ..    18; 
outpat_ptr_M at    (ntP.atora9a~unlta_par~word ranga ..    11; 
output_ptr PS •t    C*KP.atoraga_unita_par_««rd ranga 12 .     IS; 

|                           outr it_ptr_addr •t    7*M>.atoraga_unlta_|Mir~woKd ranga •    "•• 
|                             acaHnd_atataa_M ■t    8*PP.atoraga_unlta_par_word ranga .    U; 
j                           o Miiid_atatua~PB «t    t*RP.atoraga_unltajpar_a»rd rang* 12 .    IS; 

ooMaaBd_atatua_addr •t    »*KP. ■teraga_unltajpar_»Drd ranga .    IS; 
arrorvatattia_A0 it 10*RV.«toraga_unlta_par_«erd ranga .    11; 
arror_atatua_Pa •t 10***.ateraga_unlta_par_icerd ranga 12 .     IS; 
arr or_a t atu a_addr it ll*RV.ateraga_unita_par_i>nrd ranga .     IS; 
lnput_lndas_Äa ■t 12*M.atoraga_unlta_par_inrd ranga .    U; 

|                               lnput_lnd<u_P9 it 12*av.atoraga_unlta_par_i(ard ranga 12 .    IS; 
lnput~lBdwt~addr >t 13*KP.ateraga_unlta_par_«ard ranga ■    IS; 
ratrlaa lt   14*KV . ■toraga_unlta_par_ifOxd  ranga .    IS; 
naw_pell_Batrlaa U it lS*RP.ateraga_unlta par word ranga .     11; 

!                             nawwpoll_ratrlaa_PS       at  19#RP. atora9a_unlta_jpar_wovd raaga 12 ■    1S'- 

naw_poll_ratrla»_addr at  16*Rr. atoraga^unlta^par^werd ranga .    IS; 
taXBlBal_tda_aonBt         at  17*np. ■tera9a_unlta_par_«ord ranga 11 15; 
rt_lda_and_j>oll_aaq      at ia*M>. ■toraga_unlta par aord ranga .2303; 

and raaord; 

Figure 18.   Representation Clause for Variant Record 
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MODDLB RESET STS ENABLE ROM 
wtsrr SYS EMABLE ROH CSECT AB3OLOTE-00070 
INIT_3TAT0S DATA OOOOO 

DATA 00000 
DATA OOOOO 
CSECT AB9OLOTE-00040 
NOP ; SURMOS vaotora 40 
BR STARTJJP 
XIO O.ESDR 

BMMCB_SILr BR BRANCH SELF ; Vaotor to SÜRMOS at 44 
START_DP LISP o,or ; Fix up paya raglatara 

LISP i,or 
PRLOOP XIO O.WIPR.l 

XIO 0,W0PR,1 
SISP 0,1 
SISP 1,1 
BOB PR_LOOP 
LSI niIT_STATOS ; Oo to 0, atart prograa 
END 

Figure 19.   Module Resel_Sys_Enable_ROM 

FLOiyi R.A.M 

00 

3E 
40 
42 
44 

Disabl« ROM 
Branch to 40 

Continu« 

Branch to Appl 
Enabla ROM 
Branch to 44 

Figure 20.  SURMOS Interface 

have an instruction at location 42 to enable ROM (XIO 0. ESUR), followed by a branch to location 44 

(BR BRANCH_SELF). Two alternate approaches were briefly investigated. 

Since XIO instructions may be executed via Package Low_Level_IO, it would seem possible to code 

this module entirely in Ada, however, most of Reset_Sys_Enable_ROM executes before the Ada Run- 

Time System starts up. Low_LeveLIO cannot be executed until after the page registers have been 

cleaned up and a stack has been established. The code that enables ROM, the only part of the module that 

does execute after the Run-Time System has started, must have the XIO instruction placed at location 42. 

This would not be possible, since the XIO would be executed from the body of a Low_Level..IO proce- 
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dure. Finally, the module would have had to start at an address smaller than 40 (hex), since there would 

have been some preiiminary code before the first instruction in the procedure body. This would have 

overwritten the interrupt transfer vectors that must be in locations 20-3F (hex). 

The other approach would have used machine-code insertion within an Ada subprogram. This 

would still be using assembly language, but would have had the advantage of "burying" it in an Ada 

module, which would put the module under the control of the Ada library system. Unfortunately, the 

compiler did not implement address clauses for subprograms, so linker instructions would have been 

required to start the module at location 40. This approach was rejected because it would still be program- 

ming in assembly language and would have required the additional complication of special linker instruc- 

tions. 

The remaining two lines of assembly language code were machine code insertions (see Figure 21). 

These instructions branch to location 40 (to restart the 11th Missile Application) and location 42 (to 

enable ROM, thereby terminating the application). Machine-code insertion was suitable because these 

instructions are executed after the Run-Time System has started and do not need to be in specific loca- 

tions. 

with Haohln«_Ceda; 
u*a    M>ohln*_Coda; 

paakagr* body Syat«B_Controllar la 

procadura PraparatoDownload la 
bagln     —    PraparatoDownXoad 

JC_Pmt'(Opeoda ->  Jo, 
C ■> uno, 
RX ■> RO, 
Addr      ->  1S#0042#); 

and PraparateDownload; 

procadura HarmStart la 
bagln    —    WaznStart 

JC_n«t' (Opeoda ->  Jo, 
C "> uno, 
RX -> RO, 
Addr       »  1«#0040#); 

and Warmstart; 

and 9yatan_Controllar; 

Figure 21.  Machine Code Insertion 
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3. USE OF OPTIONAL FEATURES 

Optional ("Chapter 13") features of Ada were used extensively in the 11th Missile Application. The 

preceding discussion of the BIM biterface functions clearly shows that most of these features are not 

optional for real-time embedded applications. Table 26 lists the Chapter 13 features of Ada and indicates 

which ones were used. Comments on some of the options follow. 

It was not necessary to specify the storage size of an array in order to force blank spaces between the 

components. Instead, the 11th Missile team did it by making the array components records and specify- 

ing the length of the records. 

The 11th Missile team would have used the size representation clause for access types if it had been 

implemented. The BIM read 32-bit addresses, but the access types on the 1750A are 16 bits. This was 

gotten around by defining a 32-bit record containing the access type in the second 16 bits (see Figure 22). 

Storage_size was used to specify the stack sizes of the tasks. This was crucial for the Navigation 

CSC and points up a useful programming hint: always specify tasks by defining a task type and then 

declaring an instance of the type, otherwise, storage size cannot be specified. 

The 11th Missile team would have used the small attribute to fix the value of the least-significant-bit 

of fixed-point types if it had been implemented. Representations can be forced, however, by specifying 

the accuracy, range, and size of fixed-point types (see Figure 23). 

If address specification for subprograms had been implemented, the 11th Missile Application may 

have been able to place the start-up code at location 40 (see Section V.2). Machine code insertion would 

still have had to been used, but at least the assembly language would have been buried in the body of an 

Ada subprogram. 

It was not necessary to use PRAGMA Interface. In the cases where the code did interface to as- 

sembly language, it branched to the assembly statements with a machine-code insertion. 
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TABLE 26. USE OF OPTIONAL ADA FEATURES BY 11TH MISSILE 

j                 11 th Missile Usage of Optional Ada Features 

Option |     LRM |   Used 

Length Clauses 1      13.2 

1  Size 

1    Integer Y 

Enumeration i     Y 

1    Fixed Point 1      Y      1 
1    Floating Point 1     N      1 
j    Record Y      j 
1    Array N      j 

j    Access N      | 

Storage_Size Y      j 
1  Small N      j 

Enumeration Representation 13.3 Y 

Record Representation 13.4 

1  Alignment 
N      1 

1 Component Y      j 

Address 13.5 

Objects N      j 

Subprogram N 

1  Package 
N      1 

| Task N 

1  Entry 
Y      1 

1 Change of Representation 13.6      | Y 

1 Package System 13.7      ! 

Named Numbers                                         1 13.7.1 Y      j 
Representation Attributes 13.7.2    j N      j 
Representation Attributes of Real Types 13.7.3    | N 

Machine Code Insertion 13.8      | Y      j 
Interface to Other Languages 13.9      j N 

Unchecked Programming 13.10     | 

Utichecked_Deallocation 13.10.1    ! Y      | 

Llnchecked_Conversion 13.10.2 Y      j 
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typ«  long_lnput_m*aaag*_ptrs  la 
rsoord 

diiBoy   :  BIT.lnput_iuaaag*_ptra; 
ptr        :   BIT.lnput_m*aaag*_ptra; 

•nd raoord; 

Figure 22.  Forcing a 32-bit Access Type 

d*gr««a_p«r_a*cond_dalta : oonatant :■ 2.0**(-S); 
typ* d*gr**a_paz_a*cend la dalta d«gra*a_p*r_a«aond_dalta 

rang* -(2.0**9) .. (2.0**9)-d*gra*a_p*c_a«aond_<l«lti 
for d*gra«a_par_a*aond'als« uaa IS; 

Figure 23.  Forcing a Fixed-Point Representation without Using 'Small 
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SECTION VI 

EVALUATION OF AN ADA COMPILER AND 
ITS USE IN THE UTH MISSILE APPLICATION 

The inability of the selected Ada/1750A compiler ("Compiler B") to correctly compile the CAMP 

parts and 11th Missile Application code caused program delays, reduced productivity, and ultimately, 

because of the lack of adequate work-arounds for some of the compiler errors, prevented hardware-in-the- 

loop testing of the Navigation CSC. 

During the course of the 11th Missile Application development, many compiler errors were un- 

covered; additionally, a substantial number of deficiencies in the run-time performance of generated 

1750A object code were uncovered. In some areas, the compiler functioned well, producing efficient 

code on a par with more mature Jovial compilers, but in other cases incorrect or inadequate code was 

produced. 

The complicated semantics of the code very often proved to be too much for the compiler, which, 

although validated, was immature in the more advanced areas of the Ada language. For this reason, much 
effort was expended both generating Software Problem Reports for the compiler vendor, and devising 

work-arounds. 

After compiler updates and modifications to the CAMP code produced executable software, the 

execution time and storage efficiency of the object code produced by the compiler were not acceptable for 

real-time embedded (RTE) applications. Unfortunately, the most powerful Ada features (tasking, 

genetics, and variant records) were the least efficiently implemented. This implies that, for the time 

being, more sophisticated applications, including those using reusable software, will experience propor- 

tionally greater run-time performance degradation. 

I. COMPILER PROBLEMS AND SOLUTIONS 

The Ada compiler selected for the 11th Missile Application never compiled all of the Ada code in its 

original form. A workable load module could only be generated by "manually instantiating" numerous 

generics, manually in-lining some subprograms, and by combining separate compilation units. 

a. Hislury of Compiler Utiiizalion 

"Compiler B" was initially selected for the lllh Missile Application. Benchmark tests of 

"Compiler B" showed the code generated by it to be as efficient as that produced by a JOVIAL compiler. 

However, it had two major problems. First, it was not validated and was not able to generate valid code 

for the very first 11th Missile unit test attempted. Second, it did not implement extended-precision 

floating-point, which was required for 11th Missile navigation and Kaiman filtering functions. 

For these reasons, the 11th Missile team switched to "Compiler A" in November, 1986. 

"Compiler A" was validated, but not mature enough to compile the CAMP parts. It also turned out to be 

extremely inefficient, generating object code modules 3 to S times larger than those produced by 
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"Compiler B". "Compiler A" (indeed, all Ada/17S0A compilers at (he time) limited object code to 64K- 

words instruction space plus 64K-words data space. It was not possible to fit the 11th Missile code into 

that amount of memory with such an inefficient compiler. 

When it became apparent that there would be no quick solutions to "Compiler A's" problems 

(June, 1987), the 11th Missile team switched back to "Compiler B". By this time, "Compiler B" had been 

validated and extended-precision floating-point had been added. The compiler was still more efficient 

than "Compiler A". Another major consideration was that "Compiler B's" vendor provided much better 

(though much more expensive) maintenance support. 

b. Summary of Problem Reports 

"Compiler B" was still not a mature product, however, as shown both by the number of problem 

reports submitted to the vendor and by the nature of the reports. Over the course of the 11th Missile 

development, 98 test cases were submitted to the vendor as 107 problem reports (some were submitted 
more than once). 

Table 27 summarizes the problem reports by category. "Other" includes library errors, evalua- 

tion of compound boolean expressions, passing parameters to subprograms, code optimizer errors, etc. 
Although most of the reports involve advanced Ada features (e.g., tasking, genetics), many of them were 

mundane (e.g., separate compilation of non-generic subunits, boolean expressions). The vendor's com- 

piler fixes would sometimes reopen old problems. Sometimes, modifications would cause the compiler to 

fail the ACVC test suite. In short, "Compiler B" was not a mature, reliable product. 

TABLE 27, PROBLEM REPORTS BY CATEGORY, "COMPILER B" 

Nunbar of 
Catagezy VroblMU 

Oanarloa 92 
Tuklng 12 
Vlalblllty Rulaa 10 
Saparata Conpllatlon (non-ganarlo) 6 
Dear Error 4 
Exoaaalva Storaga 3 
Othar 20 

The frequency of problem reports did not decline with time. Figure 24 plots the number of 

problem reports submitted each month. The frequency of problem reports actually increased with time, 

but this is more a function of the amount of effort the 11th Missile team put into testing the software than 

the maturity of the compiler. 

Figure 24 shows a pair of early problem reports submitted before the project switched to 

"Compiler A" (November, 1986). No further reports were submitted until the project began to consider 

switching back to "Compiler B". From April through August, 1987, the approach was to lest a new 

compiler release, find the problems, submit lest cases, and then wait for the next release. In the Fall of 

1987, the strategy was switched to finding work-arounds to allow 11th Missile unit testing to proceed. 
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Figure 24.  Problem Reports by Month. "Compiler B" 

instead of wailing for the next compiler delivery. As a result, the problem submittal rate went up. But, 

within each of die two phases (Apr-Aug 87 and Sep 87-Apr 88), there is no clear trend; the number of 
problem reports neither rose nor declined. 

Figure 25 shows the cumulative number of reports submitted, including those re-opened, and 

the number of problems fixed. The vertical distance between the lines is the number of open reports. The 

horizontal distance is the average time required to fix a problem. As can be seen, the average time to fix a 

problem increased with time. 

MDAC-STL had an "on call" maintenance contract with the compiler vendor. This is a stan- 

dard contract that allowed MDAC to consult by phone and lo submit problem reports. The vendor sent 

one or more Ada system updates, as required, to MDAC between official releases. The vendor's response 
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Figure 25.   Cumulative History of Problem Reports, "Compiler B" 

to problem reports was excellent. Nevertheless, over the life of the program, the average time to fix a 

problem was 37 calendar days (including week-ends and holidays). This shows that, until Ada/1750A 

compilers mature, an Ada project wilh critical schedule deadlines must put a compiler vendor under a 

special contract to fix problems quickly. 
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c. Some Compiler Problems and Work-Arounds 

Some of the problems encountered with "Compiler B" and work-arounds for them are explained 

in the following paragraphs. 

(I)(ienerics 

A major and recurring problem was "Compiler B's" inability to handle complex generics. 

Sometimes, all that was required to get the compiler to accept a generic was to combine separate compila- 

tion units. That is, the Ada body stubs within a generic unit's body were expanded in place by directly 

importing the required code. This simplified things for the compiler and often allowed the code to be 

compiled without errors, although there were some disadvantages to this. In addition to the time and 
effort required to reorganize the flies, the physical organization of the software was disrupted, making 

up-to-date documentation more difficult to maintain and modifications more difficult to make. Further- 

more, the simple expedient of combining separate subunits was often unsuccessful. 

When combining subunits failed, a more extreme approach was to replace generic instan- 

tiations with customized "manual instantiations" of the associated code. This involved retrieving the 

software for a required generic and manually converting it to a non-generic. The code created was then 

placed into the software in place of the instantiation. Figures 26 and 27 give an example. 

In many cases, manual instantiation was not a trivial process, since some logical implica- 

tions of a generic instantiation are difficult or impossible to duplicate. For example, a generic instan- 

tiation may occur anywhere in a declarative part that a package, task, or subprogram specification may 

occur. Where such an instantiation occurs, a body for the instantiated unit is implicitly created and the 

elements of the unit are accessible according to the rules of Ada. However, when the unit is manually 

instantiated, a body is created, and that body cannot necessarily be inserted at the site of the former 

instantiation because of language rules. Since the manually created unit body of the former generic must 

usually be positioned at some distance from the manually created specification, the possibility arises that 

an element of the unit will be referenced prior to the necessary body elaborations. The chance that such 

error conditions would develop made the manual instantiation of generics a last resort. 

Interestingly though, the insertion of customized code in place of generic instantiations 

usually brought about a savings in object code size and in operand memory utilization. (This is explained 
fur her in Section VI.2.) Indeed, even when the compiler successfully implemented generics, it was oc- 
casionally necessary to use manual instantiation to conserve storage space. 
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with Bua_T«raln>la, 
BIM_Int«rf«o«_Typ»»; 

ganaclo 
thla_t«zmln«l :   In Bua_T*rmlnala .taxalnala; 
bua_dalay :   In Standard.duration; 
with prooadura Rao«lva_Maaaa9a 

(maaaaga   :   In BZM_Intarfaaa_Typaa . input_maaaga_{>tra); 
paokaga RT_BZM_Intarfaoa la 

taak typa BZM_Intarfaoaa la 

and BIM_Intarfaaaa; 

BIM_Intarfaaa  :  BZM_Intarfaoaa ; 

and RT_BIM_lntarfaaa; 

paekaga body RI_BIM_Intarfaaa la 

taak body BIM_Int«c£aoaa  la 

and BIM_Intarfaoaa; 

and RT BIM Intarfaoa; 

with RT_BIM_Intar£aaa, 
Bua_Tamlnala ; 

paokaga body Bnvlronmant  la 

paokaga Bxtamal_BXM la naw RT_BIM_Intarfaoa 
(thla_tarmlnal      -> Bua_Ta.imlnala.Mav; 
bua_dalay »> O.S; 
raaalva_maaaaga <>> MaaaagaJManagac.Raoalva_Maaaaga); 

and Bnvlronmant; 

Figure 26.   Code Before Manual Instantiation 

(2) Separate Subunlts 

Often, the compiler was unable to handle deeply nested separate compilations of unit 

bodies, evtu those which were not generic. This was generally fixed by combining separate subunils into 

one file as described above. 

Figures 29 through 32 give a graphical representation of the effect of manual instantiations 

and separate body combination on the Guid_Coinputer software. Figure 28 explains the symbols used in 

the next four figures. The first two figures depict the baseline Guid.Computer procedure as well as the 

Ouldance_Operalions package it contains. The third and fourth figures show the same two units after 

being modified to manually instantiate generics and combine separate bodies. 
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— Omtarlc RT_BIM_Int:«r£«a« pKakag« no longar n«ad«d. 

with Bua_T«xmlnala, 
BIM_Int«rfaa«_Typ«»; 

paekag* body Knvlrommnt  1» 

paokag« Ext«m«l__BIM la 

— — Objaat dselarktlona and aubprogram ranamlnga uaad In plaea of tha 
— — ganarla actual paraaatara. 

thla_tacmlnal   : Bua_Tamlnala.tarminala :■ Bua_Tand.nala.Mav; 
bua_dalay      : Standard.Duration      :■ 0.5; 
prooadura Raealva^Maaaaga (Maaaaga : In BIM_Intarfaaa_Typaa.lnput_Baaaaga_ptra) 

ranamaa Maa aaga_Managar. Raoal va_Maa a aga ; 

taak typa BIM_Intarfaaaa la    — Coda dlraotly laportad from tha 
— paokaga «pacification of tha 

— — — ... — ganario packaga RT_BIM_Intarfaaa. 
— 

and BIM_Intarfaoaa; — 

BIM_Intar£aaa : BXM_Ihtar£aoaa; 

and Extarnal_BIM; 

packaga body EKtamal_BIM la — Body oraatad to hold body coda of tha 
— ganaric. 

taak body BIM_Xntarfaaaa la — Coda dlraotly laportad fro« tha 
— body of tha ganarla paokaga 
— RT_BIM_Intarfaca. 

|       and BIM_Intarfacaa; 
" 

and ExtarnalBIM; 

and Envlronmant; 

Figure 27.  Code After Manual Instantiation 
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Table 28 shows the dramatic reduction in the use of generics due to manual instantiation«. 

Table 29 shows that the number of files compiled also dropped dramatically as separate subunits were 

combined directly into their parent units. 

(3) Parameler Passing 

Occasionally, even a simple parameter pass would not work. The solution to this problem, 

where feasible, was to manually in-line the code at the site of invocation. Figures 33 and 34 show an 

example of how (his was done. Note that in the example, the names of the actual parameters used in the 

procedure call matched the names of the formal parameters. This eliminated the need to rename objects. 

(4) Machine Code Patches 

Small problems in code generation, such as the use of an incorrect assembly language 

instruction, were sometimes solved by directly modifying the machine code in the load module. For 

example, a failure of the hardware-in-the-ioop test of the Guid_Computer was directly attributable to the 

compiler's incorrect choice of shift instructions: an arithmetic shift had been used in place of a logical 

shift. This problem was corrected by altering the instruction word, a modification which permitted the 

test to run to completion without error. 

(5) Memory Utilization 

Late in the project, the compiler was found to make extremely inefficient use of temporary 

operand storage space. Because of this, the i' th Missile Nav_Computer Software, which was larger than 

the Guid.Computer, could not initially be linked. When the static operand memory usage was reduced by 

software modifications, the successfully linked code still failed to run because of inefficiencies in the use 

of dynamic operand memory. This latter problem was caused, not by the explicit use of dynamic memoiy 

by the software, but by implicit uses of the heap by the generated object code. Also, the dynamic memory 

dedicated to the run-time stack was overused by inefficient allocations of temporary variable space. As a 

result, the working storage requirements of a subprogram or task were almost always more than had been 

anticipated during the design of the software. 

One compiler-related space inefficiency, which was partially corrected by the vendor, was 

the failure to make thrifty use of temporary space. A subprogram, for example, required not only the 

operand space implied by the subprogram's local variables, but also required temporary space for each 

operator result. Because the 1 ith Missile incorporated large Kaiman filter matrices, this was a serious 

deficiency which quickly caused the Nav_Compb<er to run out of operand space. The stack simply could 

not be made large enough to accommodate the inefficiency. 

As a temporary solution to the problem, expressions containing operators with large results 

were sometimes placed within local procedures; Figure 35 shows an example of this. To a large extent, 

this limited the effect of the problem since the space set aside for the local procedures was immediately 

reclaimed after exiting those procedures. 
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Procedure Guid_Computer  (Main) 
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Figure 29.   Baseline Guid_Computer Procedure 
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Figure 30.   Baseline Guidance.Operalions Package 
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Procedure Guid_Computer   (Main) 
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Figure 31.   Modified Guid.Computer Procedure 
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Figure 32.   Modified Guidance_Operations Package 
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TABLE 28. USE OF GENERICS IN BASELINE AND MODIFIED SOFTWARE 

Ouid_Computer 
Distinct Generics 

Nav_Computer 
Distinct Generics 

Raw Total 
Distinct Generics 

Guid_Computer 
Instantiations 

Nav_Computer 
Instantiations 

Total 
Instantiations 

Excluding Unchecked 
Conversion/Deallocation 

Including Unchecked 
Conversion/Deallocation 

Baseline 

~33~ 

73 

106 

49 

126 

175 

Modified 

9 

49 

58 

Baseline Modified 

35 

75 

110 

11 

52 

63 

43 

149 

192 

16 74 

84 

100 

200 

274 

TABLE 29. SEPARATE SUBUNITS AND FILES COMPILED 

Baseline Modified 

Guid_Computer Files 89 59 

Nav_Coniputer Files 213 177 

Total Files 306 233 

Nav_Computer Separate 
Subunits 

128 98 

Guid_Computer Separate 
Subunits 

37 20 

Total Separate Subunits 165 118 

Later, the compiler vendor implemented a more efficient allocation scheme for temporary 

variables and the need for enclosing procedures was reduced. However, certain expressions, particularly 

very long or very complex expressions in the right-hand sides of assignment statements, still made exces- 

sive use of operand space. This problem proved to be far more tractable, and was remedied by breaking 

up long expressions into intermediate sub-expressions and using multiple assignment statements. 

A second and more serious problem was the failure to reuse temporary operand space in 

the compiler's implemenlalion of generics. While return values for ordinary operators and functions were 

placed on the stack and subsequently reclaimed, the return values of generic functions (and functions 

returning types obtained from generic instantialions) were placed in space dynamically allocated from 

heap. The heap space was never reclaimed and the heap was quickly exhausted. The primary work- 

around for this was the manual instantiation of offending objects, types, and operators. Nevertheless, the 
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preoadur* Parfoxajrilght Control_pp«r«tlon« 
(B«nk_IUt«_Ll»_OT«r_l«_S«o In ODT.RadianajrP; 
Wixmt_Vmmm in 
X         ~ in aDT.81ngla_Praaiaion_rioat; 
»hi c in QDT.RadlanäjV; 
Kolljbigl« in ODT.Radiana'rP; 
PhljCLlD in out CDI.Radiana'rP; 
Bank Ircor out aDT.Radian«_rP;                                    | 
B«nk_aign>l out ODt.Volts)   la 

Looal Bani._?rror   :   CDT. Radlana__IT ; 
Phl_CLTOP _             :  SDT.RadlanajrP; 

bagln     --    Sirfor«_rilght_Control_Oparatlona 

If Flrat Paaa than 
Phi CLIDP   ;■ Roll Angl«; 

•la* 
Phi CLIDP   :- Phi CLTD; 

and if? 

Phi  CLTD   :• BankOnd Jkbaoluta U ml tar. Limit (Signal -> Phl_C>; 

PhiCLTD Oppar Lowar Llmitar. Q^pdata Llmlta 
(Maw_Qppar_LlaU.t -> Phi_CLTDP  4- Bank 
Maw_Lowar~Liait -> Phi_CLTDP  - Bank 

_R«ta_Li«_OTar_l 6_8ao, 
Jlata^LimjOvarJ.«"»*0» ; 

j            and Parform_rilght_Centrol_Oparatlona; 

bagln           — Prooaaaor 

—    Othar atatamanta... 

Parform rilght_Control Oparatlona 
(Bank_lUta_Lim_Ovar_16_Sac ■> 
rirat_Paaa      "                          -> 

Bank_Rata_Llm_0»ar_l 6_Saa 
rirat_Paa»      ~        ~ 

K                                                          -> K 
Phi_C                                                 -> Phl_C 
Roll JUigla                                     -> Roll Angla 
PhlJcLTD                                       -> Phi_CT.tD 
Buik_BrEor                                   -> Bank_BrEor 

I                                           Bank_Slgnal                                 ■> Bank~8ignal                               ); 

— Othar atatamanta... 

1      and Prooaaaor; 

Figure 33.  Section of Code Before Manual In-lining 

damage caused by the problem was so extensive that several unit tests could not realistically be fixed. 
Completion of those tests was forced to await compiler modifications which the vendor made at the 
suggestion of the 11th Missile team. 
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i;

b*9ln — troouser

— Other rtataBwita.. .

V*rfeca_rilght_CoBtrel_ap«ratleBa ; dealer*

Leoal_Benk_Brrer : GOT. lUdlana fT ;
Phl_CLTDP : aOT.Ke<Uana_rP;

b*9ln -- P*rfoEm_ril9ht_Centrol_0peratloBa

-------- Halt the beak aa«l* nnaaaivl te yet Phl_CL»

it Be*d_te_laltlalla* thaa 
Phl_CLtSP Boll hnyle;

ela*
Phl_CLTDP Phl_CLTD; 

and If;

— —update Halter vlth aau alalaoa and 
PhlCI.TD_Op|>*r_Le«*r_Llalt*r. Opdat*_Llalta

(ll*u_0|>par_Llalt -> Phl_CLTDP ♦ Baak_IUt*_Lla_OTar_l<_Bae, 
■*u_tow*r_llalt -> Phl_ClIDP - Bank~»at*~Lla~Ov*r_l<_S*e) ;

and P*rfora_rHylit_Centrol_Op*ratlena; 

— Other atataaanta... 

and Prooaaaor;

Figure 34. Section of Code After Manual In-lining 

2. COMPILER INEFFICIENCY

The Ada/17S0A cros!i<ompiler, "Compiler B", used on 1 llfa Missile was (as of May, 1988) in need 
of much improvement. Certain Ada consUiKis, especially the more powerful ones, were not implemented 
efficiently. Other constructs seemed to incorporate a good deal of optimization, yet the result was far 
from ideal. It is clear that the compiler developers are faced with a very challenging task.

a. Tasking

The most costly throughput problem was the compiler’s implementation of Ada tasking. In the 
Guid.Computer, 75% of processor throughput is expended in task rendezvous overhead while an ad- 
didonal 12% of throughput is expended for the remainder of the program. Although this processor-time 
consumption still allows tlie Guid.Computer to function within its real-time performance requirements, 
the high overhead of task rendezvous is serious. In the Nav_Compuler. where tasking overhead is 138% 
of processor throughput, the real-time performance requirements are well out of reach.



prooadur* Bxaapl* la    — Spaoa »sating. 
a, b, a,   d, a, f, x : 1NTBUBK;    — Working atoraga alia la 7 werda. 

bagln 

x :■• » + b * o;     — 2 mora word« allocatad for oparator raaulta. 

x :> d + a * £;     — 2 mora worda allocatad for oparator raaulta. 

and Bxanpla;      — Total working atoraga allocatad « 11 werda. 

preeadura Kxaapla la    — Spaea aavlng. 
a, b, a, d, a, f, x : 1HTBUIK;    — Working atoraga alia la 7 werda. 

prooadura apaaa_aavarl la 
bagln 

x :« a + b * o;     — 2 worda allocatad for oparator raaulta. 
and apaaa_aavarl ,- 

prooadura apaoa_aavar2 la 
bagln 

x :•■ d + a * f;     — 2 worda allocatad for oparator raaulta. 
and apaca_aavarl; 

bagln 

apaca_aavarl; 

apaea_aavar2 ; 

and Bxaapla;      — Total working atoraga allocatad - 9 worda. 

Figure 35.  Saving Slack Space Using Enclosing Procedures 
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The compiler vendor blames this poor tasking run-time performance on Ada requirements for 

exception propagation. The language rules require that an exception occurring in the "do" clause of an 

Ada rendezvous be propagated to both tasks. The set-up for these exception contingencies is non-trivial 

and constitutes a large part of the excessive task rendezvous overhead. 

Some of the throughput expense of tasking can be reclaimed by making careful selections of the 

kinds of tasking facilities used. For example, passing parameters to task entries was found to be expen- 

sive, as was the use of many-branched select statements and the use of guards before accept statements. 

Benchmark data indicates that overhead times grow quickly and proportionally with the number of accept 

statements used. In particular, guarded accept statements caused overhead times to grow; a greater time 

expense was incurred when the guards evaluated true. Parameter passing also caused a large increase in 

throughput consumption that was proportional to the number and kinds of parameters used. By minimiz- 

ing parameter passing and the use of guards, a more reasonable execution rate could be obtained. 

b. (»tin'i its 

While tasking proved to be the major inefficiency in throughput consumption, the use of 

generics was also very costly. As previously discussed, the use of heap space by generics wasted operand 

memory. Moreover, throughput was adversely affected by generic subprograms which carried a much 

greater run-time cost than their non-generic counterparts. Also, surprisingly, even instruction memory 

suffered from the use of generics. 

"Compiler B" uses a single-body implementation of generics. One reentrant object code body 

is created and used for all instantiations of the generic. The idea was to save memory at the expense of 

throughput, which would be expected to rise for three reasons: use of the heap, worst-case assumptions 
for generic types, and translation between actual and formal types. 

Generics had to use heap for any object whose size was not defined (e.g., an object whose 

generic formal type was private, or an unconstrained array, or an array whose index type was also a 

generic parameter). Although once the compiler had been fixed, space allocated for these objects was 

reclaimed when it is no longer necessary, the deallocation scheme inevitably fragmented the heap. Since 

real-time embedded systems can neither afford to perform extensive garbage collection nor allow wasted 

space, the use of generics was severely limited. 

A small execution time cost was the assumption of "worst-case" actual types. For example, if a 
generic formal parameter was floating point, all operations on that type had to be implemented as ex- 

tended floating point instructions, just in case the generic would be instantiated with an extended-float 

actual parameter. 

With the "single-body" implementation, each instantiation of a generic unit results in the crea- 

tion of a unique interface to the single body of object code. This interface translates from the actual type 

to the underlying implementation before invoking the body, and reverses the translation after the body 

Completes. For example, the interface code might convert an input from float to extended-float. It was 

expected that this interface code would take additional execution time. 
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It was also expected (and staled in the literature of the compiler vendor) that the single-body 

implementation of generics would result in an over-all savings in instruction memory. This turned out not 

to be the case because the customized code created at each instantiation more than outweighed the space 

savings of the single-body method. For example, by manually instantiating the Kaiman filter generics 

used by Nav_Compuler, a total of 1877 words of instruction memory were saved. The savings obtained 

was not expected, since the Kalman_Filler made use of multiple instantiations of the same generics, 

exactly the circumstance under which the single-body method should have performed best. The major 

reason for this apparent paradox is the small size of the CAMP parts; as a result, the interface code was 

larger (sometimes several times larger) than the body of the generic. 

The single-body method could be used in some cases to reduce memory usage. The compiler 

vendor needs to provide the user with the option to specify either multiple- or single-body generics. This 

could be done by implementing PRAGMA Optimize or PRAGMA Inline. 

c. Temporary Data Space 

In the absence of a global optimizer, exception handling and constraint checking mandate the 

creation of a temporary object to store the value of the right-hand side of an assignment statement. (This 

temporary object may be a large data structure.) If an exception occurs while computing the right-hand 

side, all elements of the left-hand side must still be intact. Also, the results must be checked for confor- 

mance to type constraints prior to assignment to the object on the left-hand side. Either rule requires a 

temporary object. 

Therefore, the use of large aggregates and functions returning large data structures wasted 

operand space. Language constructs of this kind were originally used because of the readability and 

naturalness of expression that they afford. For example, under the object-oriented design paradigm, a 

package body that contains a large matrix would permit this matrix to be read only via a function call that 

returns the matrix. Because of Ada language rules, the compiler creates intermediate temporary storage 

for the result of the function at invocation. The necessity for this temporary space makes this construct 

very inefficient, although it is also quite desirable. 

Sufficiently comprehensive implementations of PRAGMAS Inline and Suppress would 

eliminate most of the space inefficiency in this case. Specifically, PRAGMA Suppress could be used to 

eliminate much of the need for temporary objects returned from function calls. PRAGMA Inline would, 

in fact, remove the function call entirely but, without PRAGMA Suppress, the Ada language rules would 

still require an intermediate temporary object. 

Space problems excusable by Ada language requirements were often rectified by altering 

baseline code. These corrections were not considered work-arounds, therefore, but permanent changes to 

the software baseline. 
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d. Other Causes of Inefficiency 

The absence of PRAGMA Inline was often significant to the 11th Missile project. In many 

instances, the pragma could have been used to improve efficiency. For example, the readability of long 

algorithms was enhanced by factoring the Ada code into groups of subprograms. Also, because of object- 

oriented design, objects were hidden in package bodies and had to be accessed via function calls. Unfor- 

tunately, without PRAGMA Inline, a price was paid in terms of throughput, since overhead was intro- 

duced at the site of each subprogram call. 

Variant records were costly since they required the compiler to generate code for storing them, 

comparing them, and allering discriminants. Unconstrained arrays contributed to heap management 

problems since space for them was allocated dynamically. The implementation of these two types of 

objects implied an unacceplably sophisticated use of memory for RTE software. 

Finally, an important waste of memory space was the inclusion of unnecessary object code in 

load modules. The compiler used by the 11th Missile inserted all code of a required library unit in the 

program load module, even if only a part of the code was actually referenced. Such a waste of instruction 

space is intolerable for any real-time embedded application using the CAMP parts since many of them 

consist of large groups of generics bundled together into a package. These packages had to be modified 

and recompiled to eliminate unnecessary code, although a more sophisticated compiler/linker would 

eliminate the need to do this. For example, a compiler could separate the object code of subunits into 

separate object modules. A linker could then perform a module reference analysis to determine which 

modules could safely be excluded from a link. 

The problems described here are particularly acute for real-time embedded code. Some would 

not be considered problems in general applications. For example, the VAX Ada compiler is generally 

regarded as excellent, even though it also includes unreferenced code. This is because generally a VAX 

is installed with megabytes of memory, compared to 128K words of memory for (he 11th Missile Ap- 

plication. 

e. Are These Compiler Problems? 

Some of the inefficiencies discussed above are arguably language problems rather than com- 

piler problems. This is particularly true of task rendezvous times and the requirements for temporary 

storage of intermediate results. 

There has been considerable discussion within the Ada community as to whether or not an 

efficient implementation of the general Ada task rendezvous is possible. It is certainly not possible 

without some sort of global optimizer. Similarly, the temporary space allocation problem can be solved 

only by a global optimizer that knows if there is an exception handler that will require the original value 

of the left hand side of the assignment. Discussions with "Compiler B's" vendor indicate that such an 

optimizer is years in the future. 

Many of the problems appear to be a resul' of the complexity of Ada. At least in the short term, 

the complex rules imposed by Ada evidently leave the compiler implementor with quite a chore in simply 
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achieving conformance. Because of this, and because the Ada Compiler Validation Capability (ACVC) 

does not check for it, efficiency Is often sacrificed to achieve validation. The complexity Issue has often 

been raised as a criticism of Ada and, at leas! for the time being. It appears to be a significant factor In the 

Industry's effort to develop efficient and effective RTE Ada compilers. 
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SECTION vn 

CONCLUSIONS AND RECOMMENDATIONS 

I. CONCLUSIONS 

• The 11th Missile development demonstrated that a productivity improvement as high as 15% is 

possible for a navigation & guidance application using the CAMP parts, and that a productivity 

improvement as high as 28% is possible for this type of application using both the CAMP parts 

composition system Kaiman Filter Constructor and the CAMP parts. 

• The full productivity improvements from using a PCS, or even the parts, will not be realized until 

MIL-STD-1750A-targeted Ada compilers mature. 

• The MIL-STD-1750A-targeled Ada compilers examined by the 11th Missile team are currently 

(May, 1988) inadequate for the following reasons: 

- They do hot handle complicated genetics. The CAMP parts utilize the most advanced 

generic features of Ada. The three validated Ada/1750A compilers tested by MDAC-STL 

either did not compile, or did not correctly execute, the CAMP parts. 

• Generic instantiations are inefficient. "Compiler B" used a single-body approach, which has 

significant execution-lime and memory penalties. "Compiler A" used a multiple-body ap- 

proach, even if the underlying base types are identical. 

-PRAGMA Inline is not fully implemented. "Compiler B" did not implement this pragma at 

all. Neither "Compiler B" nor "Compiler A" in-lined instantiations of generics. Since many 

of the parts are very small, there is a significant usage penalty if instantiations of generics 

cannot be put in-line. 

- Task rendezvous are inefficient. Over 75% of the Quid computer's and over 135% of the 

Navigation computer's throughput was required for task rendezvous. 

• Ada is an effective language for real-time embedded software, provided that the optional ("Chapter 

13") features of the language are implemented. 

• The PCS Kaiman Filter Constructor did not generate code suitable for use in the 11th Missile 

Application, ihe full-matrix code would have been loo slow, while the sparse-matrix code ex- 

ceeded the instruction memory limit. 
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• The PCS or the CAMP parts need to be extended into new areas, particularly: 

- Floating-point operators (the strong typing philosophy embodied by the CAMP parts means 

thai many such operators arc needed for an application) 

- Records and representation specifications for I/O ports or messages, and code to read 

from/write to those records 

• Code to sequence navigation functions 

• Code to sequence Kaiman functions 

• Parts in the following areas need to be modified or added: 

- Coordinate Vector Matrix Algebra 

- Wander Azimuth Navigation 

- Waypoint Steering 

- Kaiman Filter 

• Signal Processing 

• Geometric Operations 

-WGS 

• Flat-earth Navigation 

2. RECOMMENDATIONS 

This Section recommends modifications to the CAMP parts, PCS, and Ada. 

a. Mudiflcaliuns (u Parts 

• Revisions to Coordinate_Vector_Matrix_Algebra (CVMA) 

• Change Matrix_Operalicns so that the two axes of type matrices can be different (see Figure 

36). The most common use for the 3-by-3 matrices handled by CVMA is coordinate trans- 

formations. The old coordinate frame indexes the columns and the new frame indexes the 

rows. 

- Make similar modifications to Matrix_Scalar_Operations, Matrix_Vector_Multiply and 

Matrix_Matrix_Multiply (see Figures 37, 38, and 39). 

- Add parts to transpose a matrix and lo multiply by the transpose of a matrix. 

• Drop   Compule_Latitude_Using_Arctangenl,    Compute_Longitude,    and   Compute_Wander_ 

Azimuth_Angle from Wander_Azimulh_Navigation_Parts (WANav).  These parts all use single- 
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Curreni 
ganado 

typ* Axaa la   «>) ; 
typa Elaoanta la digit« <>; 

paokaga Matrlx_Oparatlona la 

typa Matrloaa la array (Axaa, Axaa) of Blaaanta; 

and ltetrlx_Oparatlona; 

Recommended 
ganarla 

typa Row_Axaa la (<>); 
typa Col~Axaa la «»; 
typ« Blaütanta la digit* <>; 

paokaga Natrlx_Oparatlona la 

typa Matrloaa la array (Roir_Axaa, Col_Axaa) of Bl 

and Matrlx_Oparatlona; 

ita; 

Figure 36.  Recommended Change to Matrix_Operations 

parameter arctangents. (Versions using two-parameter arctangents are also in WANav.) The lon- 

gitude and wander-azimuth parts give incorrect answers whenever the correct answer is in the 

second or third quadrant. In theory, the latitude part is correct, but all single-parameter arctangent 

functions lose accuracy near the poles. No military system can live with such restrictions; there- 

fore, these parts should be dropped. 

• Change Crosstrack_and_Heading_EiTor_Operations (part of Waypoint_Steering) to use two- 

parameter arctangent functions instead of single-parameter arctangents. The part is written with no 

assumptions on the range of the heading error, so, to be consistent, it should use full-range arctan- 

gent functions. 

• Investigate every instance of a single-parameter arctangent in the parts. In each case, determine 

whether or not it should be changed to a two-parameter arctangent, or if an equivalent part that uses 

a two-parameter arctangent should be added. 

• Changes In Kaiman filter parts 

- Add a measurement reasonableness lest that implements the following: 

Reasonable :=)'2 < MihPh1 + r) 

where       Reasonable = true if measurement is acceptable 
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Curreni 

gmacie 
typ* Axaa     la (<» ; 
typ* Elwwntal la digit»  <>; 
typ* Blan*nta2 ta digit« <>; 
typ* Soalara   ta digit« <>; 
typ* Matrloaal la array (Axaa 
typ* Itatrla*a2 ta array (Ax*a 
with function "•" (L*ft  : El 

Mg'ht 
with function "/" (L*ft 

Ax*«) of Elamantal; 
Ax*«) of ElaaantaS; 
»ntal; 

Scalara) r*tum ElaaMnta2 la <>; 
El*Mnta2; 

Right : Scalar«) ratum El« 
paokag* Matrlx_Saalar_Op*ratlona la 

antal la O; 

function 

function "/" 

(Matrix 
Multlpllar 

Matrlc*al; 
Scalar«) ratum HatrlcaaZ; 

(Matrix 
Dlvlaer 

Matrlc*a2; 
Scalar«)   ratum Matrloaal; 

and Matrlx_3c«l»r_0par«tlo>«; 

Recommended 
ganarle 

typa Row_Axa«  1« (<>) ; 
typa ColAxaa  la «» ; 
typ* Elamantal la digit« <>; 
typa Elananta2 la digit« <>; 
typa Scalar«  1« digit« <>; 
typ* Matrlc*«! ta array (Row_Ax*«, Col_Ax*a) of Blaaantal; 
typa MatrlcaaS ta array (Row_Axa«, Col_Axa«) of ElaManta2; 
with function "•" (Laft  : ElaaMntal; 

Right : Scalar«) ratum ElaaantaS ta <>; 
with function "/" (laft  : Blaawnta2; 

Right : Scalar«) ratum Elaawnt«! 1« <>; 
paokaga Matrtx_Scalar_Oparatlen« 1« 

function ■'*" (Matrix    : Matrloaal; 
Multlpllar : Scalara) ratum Matrloaa2; 

function "/" (Matrix  : Matrloa«2; 
Dlvi«or : Scalar«) ratum Matrloaal; 

and Matrlx_Scalar_Oparatton«; 

Figure 37.  Recommended Change to Malrix_Scalar_C)peralions 

y = i"' element of the measurement vector. Y 
M = tolerance 
h = i"' row of the measurement sensitivity matrix, H 
P = system covariance matrix 
r = i''1 diagonal element of the measurement covariance matrix, R 

Two versions will be needed, one each for compact and complicated representations of H. 

• Add Compute_Kalman_Gain parts that lake advantage of intermediate products computed in 

the reasonableness test. Both the reasonableness test and Compute_Kalman_Gain compute 

ItPh1 + r. In addition, Compute_Kalman_Gain computes PhT, which is an intermediate result 
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Current 

ganarlo 
typ» Ax«« 
typ« Input_V*etor_El« 
typ« Oatput_V«etorJBl 
typ« Matrlx_BlMMnta 
typ« Input_V«otora 
typ« Output_V«etera 
typ« Matrlo«« 
with funotlon   "*"   (L«ft 

Right 

1« «»; 
nt» la dlglta <>; 
«nta la dlglta O; 

la dlglta <>; 
la  ar»y   (Ax«a)   of Xnput_V«ator_BX«aMnta; 
la array   (Ax«a)  of Output_V«ator_Bl«a«nta; 
la array   (Jütaa,   Ax«a>   of Matrlxjilaaanta; 

Mat rlx_KlM«nta ; 
Input_V«ctet._ZlaaMnta) 

r«tum Output_V«ator_Uaawnta la <>; 
funotlon Matrlx_V«otor_Multlply 

(Matrix   :   Matrloaa; 
Vaoter  :   Input_V«otora)   return Output_V«atora; 

Recommended 
9«n«rlc 

typ« kx«al 
typ« Ax«a2 
typ« Input_y«otor_Blai 
typ« Output_V«otor_Blaa 
typ« MBtrlx~BlaMnta 
typa Input_V«otora 
typ« Output_V«otora 
typ« Matrloaa 
with funotlon "•"   (L«ft 

la   «»; 
1» «»; 

nta    la dlglta O; 
wnta  la dlglta <>; 

la dlglta <>; 
la array   (JUaaZ)   of Input_y«otor_Blaat«nta; 
la array   (kxaal)   of Output_V«eter_Bl««Hinta; 
la array   (Axaal,   JUl«a2)   of Matrlx_BlaaMuita; 

Matrlx_BlaBanta; 
Input_Vaator_BlaB«nta) 

~       nta la <>; 
Right 

r«tum Output_V«otor_El 
funotlon Matrlx_V«ator_Multlply 

(Matrix   :   Matrloaa; 
Voctor   :   Input_V«otora)   r«turn Output_V«otora; 

Figure 38.  Recommended Change lo Matrix_Veclor_MuHiply 

of the first computation.  Versions of ComputeJtalman_Gain should be written that make 

use of these intermediate products from the reasonableness tests. 

- Add simultaneous update parts. The current parts sequentially update the state and 

covariance, using one measurement element and one row of H at a time. A simultaneous part 

would update all elements/rows at once. A part to invert symmetric matrices will need to be 

added to General_Vector_Matrix_Algebra to support this. 

- Revise the higher-level Kaiman parts (Sequenlially_Update_Covariance_Matrix_and_State_ 

Vector and Kalman.Update) to lake the procedures they will instantiate as arguments. This 

gives the user the option of specifying which procedure to use for Compute_Kalman_Gain, 

and Updale_P. 

• SlgnaLProcessing Changes 

- Add a first-order filter that allows the user to specify the initial values of both the "previous 

input" and the "previous output" (these are stored in the filter software). 
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CurreiK 

fwiarle 
typ* JUaa la   «» ; 
typ« L«ft_XlMMnta       la  digit a <>; 
typ* Rlght_El«B«nta  la digit a <>; 
typ« R«ault_El«««nt« la dlglta <>; 
typ« L«ft_Matrlc«a   la array (Axaa, Ax«a) of Laft_Bl«Manta; 
typ« IU.ght_Matrlc«a     la array   (Axaa,  Ax««)  of IU.9ht_El«aMnta; 
typ« Raault_Matrioaa  la array   (Axaa,  Axaa)  of IUault_Bl«aMnta; 
with function   "•"   (Laft     :   L«ft_BlaM«nta; 

Right   :   Rlght_El«B«nt«)   ratum Raault_El«M 
function Matrlx_Matrlx_Multlply 

(Matrlxl   :   L«ft_Matrlo«a; 
Matrlx2   :   RlghtMatrloaa)   raturn RaaultJUtrloaa; 

inta la <>; 

Recommended 

g«n«Elo 
typ« Xx«al 
typ« Ax«a2 
typ« Axaa3 
typ« Laft_BlaaH 
typ« Rlght_El«i 
typ« Raault Zlt 

la «»; 
ia «»; 
la   «»; 

inta la dlglta <>; 
i«nta la dlglta <>; 
■tanta  la dlglta  O; 

typ« L«ft_Matrlc«a       la  array   (Axaal,   Xx«»2)   of L«ft_Bl«iMnta; 
typ« Rlght_Matrla«a     la  array   (Axaa2,   Ax«a3)   of RlghtJUaawnta ; 
typ* R«ault_Matrlc«a la array   (teaal,  AxaaS)   of Raault_Rl«Mata; 
with function  "•"   (Laft     :  L«ft_llaawnta; " 

Right   :  Rlght_El«Mnta)   raturn Raault_Blaawata la O; 
function Matrlx_Matclx_Multlply 

(Matrlxl   :   Laft_Matrlo«a; 
MatrlxS   :   RlghtMatrloaa)   raturn R««ult_Matrlo*a; 

Figure 39.   Recommended Change lo Matrix_Matrix_MuItiply 

- Change all fillers to allow input and output lo be different types. 

• Add a third-order filter for barometric altitude smoothing. 

1 Add a pari to Geometric_Operations that computes the geodetic coordinates (i.e., geodetic latitude 

and longitude) of a new point, given the geodetic coordinates of a starting point and the distance 

and heading from the starling point lo the new point. This would be useful for mission-planning 

and ground analysis software. 

Add a sei of WGS84 parts. WGS84 is supplanting WGS72 in some cruise missile applications. 

Add a sei of "flat-earth" navigation parts.   Very short range weapons (e.g.. Have Slick) do not 

require navigation algorithms as sophisticated as those supplied by the parts. 
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b. Modifitalions to (he CAMP PCS 

• Modify (lie Kaiman Filter Constructor to add the following options: 

- An additional matrix representation. The constructor, as currently implemented, has two 

options for representing Kaiman matrices: full or sparse. The full-matrix code use less in- 

struction memory, but more operand memory and is relatively slow. The sparse-matrix code 

uses much more instruction memory, but is relatively fast. Neither was acceptable for the 

11th Missile Application. Other methods for representing and manipulating sparse matrices 

should be investigated, and at least one additional method should be implemented in the PCS. 

Any method implemented should not be as code-intensive as the current sparse-matrix 

method, nor as data-intensive as the current full-matrix method. 

- Generate update control code for multi-measurement-type filters. The generated code would 

be equivalent to the Sequentially_Update_Covariance_Matrix_And_State_Vector part for 

single-measurement-type filters. The code would be similar to the body of the part, except 

that the measurement, measurement-variance, and measurement-sensitivity would be variant 

types (one variant for each type of measurement) and the body would contain a case state- 

ment with one branch for each variant. 

• Optionally include a measurement reasonableness test. 

• Optionally generate sequential or simultaneous update code. 

• Enhance the Data Type Constructor to automatically generate floating-point operators as required. 

The CAMP parts are strongly typed, which means that many operators are needed. The Basic. 

Data.Types part has operators needed to instantiate the parts. The problem is that the new code 

written to use the parts needs many additional operators. At the very least, the constructor should 

write the body from the function specification. At best, it should also write the specification based 

on "missing function" compiler error messages. 

• Add Input/Output constructors that: 

- Generate records and representation specifications for bus messages and I/O ports. 

- Generate functions to encode and decode bus messages. 

• Generates a skeleton select statement that invokes the message decoding functions. 

• Modify the Navigation Constructors to generate an executive that invokes the instantiated parts. 
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c. Suggested Aria Language Improvements 

Allow constant expressions in address clauses. It was not possible to write a single generic 

package to handle both Bus-Controller and Remote-Terminal Bus Interface Modules (see section V.l.a), 

because the interrupt levels were different. The address representation clause, which is used to specify 

the interrupt level, must use a "simple_expression" for the address. In other words, it is impossible to 

make the interrupt address a generic parameter. Thus, the 11 th Missile Application contains two very 

similar packages: one for ^us-Controller BIMs and one for Remote-Terminal BIMs. 

Allow representation specifications to be separated from the declarations they specify. This 

would have permitted the 11th Missile team to create multiple sets of representation specifications, one 

set for each compiler used, instead of creating tools to comment out the specifications not applicable to 

the compiler in use (see Section 11.2.0- 
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THE APPENDIX 

11TH MISSILE USAGE DATA BASE 

I. INTRODUCTION AND BACKGROUND 

One of the requirements of the 11th Missile Application was that it keep track of the CAMP parts 

used. Since a database which listed all the parts and their sizes (in lines of Ada code) already existed, a 

field to track 11th Missile usage was added to the tables that already stored the sizes. This field allowed a 

parts usage report to be generated from the original database relations. For a listing of the relations and 

their fields, see Volume I, Appendix A. 

More than a simple list of parts used was needed: information about how a part was used, who used 

it, what project the user belonged to. and an additional remark also needed to be tracked. This additional 

information was stored in a separate relation, called the Parts.Usage relation. 

The Usage table and its fields are shown in Table A-1. 

TABLE A-l. PARTS USAGE FIELDS AND DESCRIPTIONS 

1                                                        Parts Usage Relation 

Column Name Description                                               1 

Uier_Ptrt The part nimber of iheapplicilion or CAMP part which imketHK of die pirt. 

PiitJJied 

Projecl The project name of the uaer_part 

UiigeJTyp« The type of usage. Type« included direct, modified, md Indirect                                                          1 

Remirk 

It should be noted that the User_Part and Part_Used fields relate to the part numbers that are in the 

TLCSC and Adalevel relations. This allows applications access to the information stored in these tables. 

At present, since only sizes are required in the reports generated, and the sizes can be gotten more easily 

from the TLCSC and Adalevel relations, there are no specialized reports making use of the usage table. 

2. DATABASE ISSUES 

There were several issues concerning the Usage database which were distinct from the size database. 

The first was how to count modified code. The llth Missile Application counts a part as used if it 

modifies the part for its own usage. Modification, of course, changes the line count of the part. The 

database, however, maintains the line count of the original part, not the modified count. In counting code 

for the llth Missile Application parts usage, it was preferable to count the modified lines of code for 

modified parts. This meant that these numbers had to be put into the reports manually. It didn't seem 

feasible to put an extra field in the database, since the number of parts actually modified was small. 

Another issue was the type of usage. The parts are heavily inter-dependent (i.e., the parts use other 
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parts). If the 11th Missile Application used a part which in turn used another part, then both of those parts 

needed to be marked as used. This means that the parts usage of parts must be derived from the 11th 

Missile usage list This can be done automatically from the Parts Usage relation, but not from the 

TLCSC and Adalevel relations. Since the usage information is duplicated in all these tables, it is possible 

to have inconsistent data. 

A third difficulty arose from the nature of the parts. Since a part could be a TLCSC, an LLCSC, or a 

unit, how to count lines of code became a problem. When the part is a unit, often the specification for the 

part is in a separate file, since the CAMP parts make extensive use of separate compilation of Ada units. 

The question then arises as to whether the specification should be counted or not. If it is counted, it may 

contain the specifications of other pieces of a part which were not actually used, along with the specifica- 

tion that was actually used. If it is not counted, then the specification code for the piece actually used 

doesn't get counted. This was handled on a case-by-case basis. If all, or most, of the parts in a package 

were used, the specification code count was included. If only a few parts from a package were used, the 
specification code count was not included. 

3. PARTS USAGE AND CODE COUNT 

The parts usage and code count table (see Table A-2) is an edited version of the parts usage table 

from Volume I, Appendix A. The comment size, test code size, and Uth Missile usage columns were 

deleted, and the "Use Code" column added. Every part has one of the following five usage codes as- 

signed: 

• U (Used): The part was used without modification. 

• M (Modified): The part was used with modification. 

• DF {Duplicate Function): The part implements the same function as a part that is used by the 11th 

Missile. 

• NA (Not Applicable): The part implements a function not required by the 11th Missile. 

• NC (Not Compatible): The part performs a function required by the 11th Missile, but was not used. 

All part code sizes were deleted from the table, except for those parts used without modification. 

The code size totals were computed manually. 
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TABLE A-2. PARTS USAGE AND CODE COUNT 

(Part 1 of 18) 

ncsc TK<C HUM Codaflia     || lartlDaa || 
Noabat tow« Unl Onlt» apae | body || 1Codall 

tool Coaasn Ntvlgttlon P«rt» 1 II   1 •    1        II 
Altltod* Intagntlon 12 1 7 II r   1 o   II 

MialtlallM 2 1 T II   1 >  1      II 
Zntaftit* J 1 U II   1 •  1      II 

CiMput* Oreund Velocity 10 | • II    ' r   1 o   || 
Co^pat« OriTlUtlonal Aeo*Uiatien Ut la 1 II    1 r   1 or || 
Co^pot* OnTitatlond AoMltzatlon «In Ut In I» 1 13 II    1 r   I o   II 
Capita HMding 1 II   1 r   | n n 
Opdat« VaXooity 20 | < II    1 r   1 o   li 

MlBltlalln 1 1 i II   1 i  1      II 
Dpdito * 1 1« II   1 *  1      II 
Currant Valoelty 1 1 » II   « i  1      II 

lealar Valoelty 1 II    1 r   i m n 
Coapota Rotation Inenaanta 1 II    1 t    1 Kfc || 

»002 

IDBTOnil 

Nandar Ailauth Narlgatlon farta 
Coa^nta larth lalatlva Reriiontal Valeeltlaa 
Coapota Total Angular Valoelty 
Coaputa Corloli« Jteealatatlon 
Total tlatfena «otation Data 
Barth Rotation Rata 
Ccayuta 

Ceqpnta larth Ralatlva HaTlgatlon Rotation Rata 
Compute Handar Aliaith kagla 
Compute Latituda 
CoafKita Latitude doing Arotan 
Coaputa laat Valoelty with Sin Coa In 
Coaputa Longitude 
Coaputa Curraturaa 
Coaputa laat Valoelty 
Compute Horth Valoelty 
Corlolla Aeealaratlen fron Total Rataa 

Caayuta 
Coaputa North Valoelty with Sin Coa In 
Coaputa larth Relativ« Horliontal Valoeltlaa with Sin Co 
Coaputa Latitude Dalng Two Value Aretangant 
Coaputa Longitude ualng Two Value Aretangant 
Coaputa Wander Ailauth Angle ualng Two Value Aretangant 

SUBTOTALS 132 14» 20 

»003 North »olntlng HaTlgatlon »arta 
Coaputa Corlolla Aoeeleratlea 
Total »latfona Rotation Rataa 
larth Rotation Rate 
Coapute 

larth Ralatlwe Nawlgatlen Rotation Rate 
Caaputa 

Latituda Integration 
Ralaltlallie 
Integrate 

Longitude Integration 
Ralnltlallae 
Integrate 

Radlua of Curvature 
Coaputa 

SOITOTALS 
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TABLE A.2. PARTS USAGE AND CODE COUNT 

(Part 2 of 18) 

ncK |      ncsc RMM 
■MbMl                     lOMt  UT«1 Onlti 

II 
II 

Coda 111*     || r«xt|DM jl 
•PM |   body ||         |Cod»|| 

13(1     |   OHMtal OtllltlM 
I     iMtnetlsn tat TMt 

II 
II 

1            II   ■   1       II 
1            II   X    1 A || 

wnuuu 0            0            1 

1*01    I tofBohtmem Control 
|     Data DrlT«n Taak fball 
|     Intaznipt-DxlTaB Taak «Mil 
|     Apazledlo Taak lhall 
j     Centlnuoua Taak lhall 
I     »atledlo Taak lhall 

II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
11 

mroiuj 

1(02   | Co—ioatloa »atta 
I Update Bselualon 
| Mad Opdata 
| Attest Raad 
| Attaapt Mad Halt 
| AttMpt Mad Dalay 
| Attest Itatt Update 
| Attest Itatt Update Walt 
| Attest Itaxt Opdate Dalay 
I Atteapt Ccaylate Opdate 

M31   | Hlaalla Mdat AltlMtaz laadlat Pazta 
j f«vat On 
| towat Off 
| Ooto Txanaait Heda 
| Ooto Itandby Hoda 
| taxfoza Milt la Taat 
j Par fen Built In Taat laquose* 
| Mad Altltoda Faat 
I Mad Altltuda Intagat 

•DBTOtkU 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II ; 
ll » 
II «! 
II ■ I 
ll ■ l 
ll > l 
ll * I 
ll ■ i 

fi 
ll 
ll 
ll 

IDMOOkU 1 

II» | IBI72 Ullpaeld Mtzlo Data 

1112 I MI72 tlllpaold If^lnaatlng Data 

M13 | miT2 Ullpaeld Dnltlaaa Date 11 1 

»(14 | Cearataion Pacteza 41 1 

PUS I (taiTazMl Cenatante 

P(21 | Malo Data Typaa 

PI22 | blmn Piltaz Data Typaa 1 K || 

P(23 | Antopllot Data Typaa 1 « II 

1 A || 
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TABLE A-2. PARTS USAGE AND CODE COUNT 

(Part 3 of 18) 

ttcsc I 
I 

TtCSC Huw 
Lemt Laral Onlta 

»(32    | HlMil« twUz MtlaaUr Hindlar Auto 
| Goto Tturndt Mod* 
j Goto Ibudby Hod« 
| r«tf otB Built In TMt 
j PattetB lullt In TMt Saquanoa 
| Itoad Utitud« fMt 
I Road Utitud« Int«9*i 

Cod* SIM     11  Vact|Df • 11 
I   body || |C«d*|| 

M33 

smrerus 

•w Intaifto* Patta 
land Haaiaga Oiing kddtaai He Wait 
tend Haaaaga Oalng Mdraaa Halt 
Data Tranafat Ho Halt 
Data Tianafar Halt 
Patfera lullt In Taat 

Intatfaoa 
Djpdata Ratiy Count 
•and C—nil Halt 
land Hoaaaqa He Halt 
■and Haaaaga Halt 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

M II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

»(34 

TOTOTAU 

Clock Handlar 
Cutrant T1M 
Conractad Tlaa 
Daaat dock 
lynohconlia Clock 
llapaad Tlaa 

II 
II 
II 
II 
II 
II 

S 
1 
2 i 
11 
S I 
1 I 

I  U jj 

P(44 

rOITOTAU 

Dltactlon Coalna Matrix Opatatlena 
DCN Oanaral Oparationa 
DCM Inltlalliad Proa Kafatanoa 
DCN Tiapaioldal Integration 

«alnltlallia Angular Valoeltlaa 
Parfora Trapaioldal Intagratlen of DCN 

Parfon Raotangular Intagtatlon of DCM 
Raorthononallia DCM 
fraw Miaallgnaant 
Aligned DCN Matrix 
DCN Proa Quatainlen 
Compute Pint Re* froa Oxthenoraal 

CHI Oparationa 
Raorthonotaallia CHI 
OH Inltlalliad Proa larth Poaltlen 
CHI Integration 
Parfora Trapaioldal Integration of CMI 
Ralnlt Kng Vel Per Trapai Intag of CHI 
Parfora Rectangular Integration of CMI 

Alignaent Parta 
Praaa Miaallgnaant of CMI 
Aligned CMt Hatix 

CMI Proa Quaternion 
Coaf Uta dB 

Compute Pirat Row of CHI froa Otthonoraal 
CMI Inltlalliad Proa Rafarenea 

SOITOTALS 310 407 IS 
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TABLE A 2. PARTS USAGE AND CODE COUNT 

(Part 4 of 18) 

TICK |         TICK HIM II Coda Uta     || »attlOfa || 
|                 Lemr Ural Onit» II «f« 1   body || ICedall 

MM | ItelMB riltat Conoa »art« II 1            II   " 1       II 
|     ttata Ttaaattlea »ad »reeaas Helaa Mattloaa Hasagar II 31 1       W II   T 1 0   II 
|         laltlallta II 1        < II   " 1       II 
|         »tapagata II 1       10 II   H 1       II 
|        Oat Cattaat II 1         ' II   * 1       It 
|         »repagatadjhi II 1        s II   « 1       II 
I     Ittoc CoTarläaoa Mattiz Miaagat II IS 1         » II   » 1 0   II 
|         laltlallta II 1         S II    H 1       II 
|         trepa9ita II 1         (MM 1       II 
1         > II 1         » II   " 1       II 
|     ftata Tiaaaltloa Hattlz Muwgat II 1           II   x 1 or II 
|         »zepagatad »hi II 1             II   " 1       II 
|         laltlallta- II 1             II   » 1       II 
I         »ropagata II 1             II   » 1       II 

ranonu SI 12 3 

»152 | KalMa rlltar Caqpaet 1 »art* II 1             II   " 1       II 
Co^ata Ralwa flala II It 11 II   « 1 o   II 
Dpdata Inet Corarlaaea Hattlz II 1              II    * 1 w II 
tydata Itata Vaoter II 20 1       13 II   X 1 o  II 
■aqoaatlally O^data Ceratlaaoa Hattlz aad Itata Vaetet II II   » 1 "CII 

tH«U II II   * 1     II 
Ralaaa Opdata II II   » 1 "c II 

QtMiata II II   ■ 1     II 
Dpdata Ittet Ceratlaaoa Hattlz Oaaatal Fen II It " II   x 1 o  II 

nmonu ft 41 < 

»(S3 lalMO riltat Ce^lleatad I »atti II II   " 1     II 
Cearata Ralaaa Gala II 30 20 ||   » 1 o  II 
Opdata Itzoz Coratlaaea Hattlz II II   x 1 w II 
Opdata ftata Vaetet II 21 14 II   X 1 v  II 
■aqeaatlally Opdata Ceratlaaoa Hattlz aad ttata Vaetet II II x 1 K II 

Olpdata II II   « 1      II 
Ralaaa Opdata II II  x 1 K || 

Opdata II II   " 1      II 
0|pdata Ittet Ceratlaaoa Hattlz Oaaatal rota II 3S 17 II    X 1 n   || 

nmonu tl SI « 

»Ml   | Haypelat ftaatlag II II " 1    II 
Olataaoa te Cattaat Haypelat II II   > 1 or || 
Coapat« Votalag aad Heatetalag Dlataaoa* II " 1« II   x 1 o  II 
Tata Taat Opatatleaa II i 14 II   X 1 o  II 

■top taet II * 1 13 II   H 1     II 
II « 1 13 II   a 1     II 

■taatlag Vaetet Opatatleaa II 1 II   x 1 W II 
laltlallta II 1 II   « 1    II 
Qjpdata II 1 II   " 1    II 

Staatlag Vaetet Opatatleaa »1th Ateala II 24 | »3 ||   X 1 o   II 
Inltlallta II " 1 40 ||   H 1    II 
Optlata II » 1 23 ||   H 1    II 

Co^pata Tata togla aad Oltaetloa II " 1 34 ||    X 1 v   || 
Cteaattaek tad laadlag Ittet Opatttlea« II 1 33 ||   X 1" II 

Ceapnta Hhaa not Ttttalag II 1 II   » 1    II 
Ceapota II 1 II   * 1    II 
Coapata Nhan Tanlag II " 1 43 ||   R 1    II 

Dlataaea te Caitaot Haypelat «1th ktetia II 1» 1 U II   x 1 o   II 

■oiTonu in 2S1 1 
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TABLE A.2. PARTS USAGE AND CODE COUNT 

(Part 5 of 18) 

nuc |   TLCK HUM 11  Coda Ilia  11 PartlDaa 11 
NUBbarj      Low«! UT«1 Dnlt* II  iPM 1 body || ICodaM 

r((2 | Autopilot 
|  Intake«! Plus Ptopertlonal Gtln 1 « II 
j   Intagtit« 
|   Dpdat« Proportionil Gtln 11 
|  Pitch Autopilot j | 1 « II 
|   InltiiliM Pitch Autopilot 
j   CoMpat« Il«T«tor CoBsuid 
|   Opdat« Pitch Rat« Gain 
j   Dpdata Aoealatation Gain 
j   Dpdata Intagxatoi Gain 
j   Dpdata Intagxator Liait 
|   Dpdata Proportional Gain 
j  Latatal Diraetienal Autopilot 1 DC II 
|   Inltialiia Lataral Olraotional Autopilot 
|   Coaputa Ailaron Ruddar Coaaanda 
j   Dpdata Ailaron Intagrator Gain 
j   Dpdata Ailaron Intagrator Liait 
j   Dpdata Roll Coaaand Proportional Gain 
|   Dpdata Roll Rata Gain For Ailaron 
|   Dpdata Yaw Rata Gain For Ailaron 
i   Dpdata Ruddar Intaqxator Gain 
|   Dpdata Ruddar Intagrator Liait 
|   Dpdata Faadbjok Rata Gain For Ruddar 
|   Dpdata Roll Rata Gain For Ruddar 
j   Dpdata Acralaration Proportional Gain 

IDBTOIAU 

P671 Air Data Parta 
Coaputa Outaida Air Taaparatur* 
Coaputa Praaaura Ratio 
Ceaputa Haoh 
Coaputa Dynaaie Praaaura 
Coaputa Bpaad of Sound 
Baroaatric Altituda Intagration 
Coaputa Baroaatric Altituda 

II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 
II 
II 

I II 
I * II 
I *  II 
I » II 
I » II 
I » II 
I « II 
I II 

SUBTOTALS 

P«72 Fual Control Parta 
Throttla Coaaand Hanagar 
Coaputa Throttla Coaaand 
Dpdata Mach Error Liait 
Dpdata Mach Error Intagral Liait 
Dpdata Throttla Rata Liait 
Dpdata Throttla Coaaand Liait« 
Dpdata Mach Ixror Gain 
Dpdata Throttla Bandwidth 

SDBTOTALS 

II 
II 
II 
II 
II 
II 
II 
II 
II 
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TABLE A-2. PARTS USAGE AND CODE COUNT 

(Part 6 of 18) 

ILCIC |    nCIC Mut II Coda tiia II Part |Ota || 
Itabar j      lernt Laval Omit* II »P— 1 body || ICodaM 

Mil | Coordinata Vaotor Mitxlz Algabra II II 1   II 
|  Matrix Oparatlona II II 1   II 
|   •♦• II II 1 » II 
1      m m» II II 1 » II 
|   "+" II II 1 »II 
|      mmm II II 1 A II 
|   lat to Idantity Matrix II II 1 m II 
|   lat'te^CareJütxix II II 1 « II 
j  Vaeter löalar'Oparatiena II 14 1 II 1   II 
1   **' II 2 10 II 1 0 II 
|   Iptraa X Vaetor toalar Nnltiply II II 1 » II 
1   '/•     " II 2 10 II 1 D II 
|  Matrix toalar Oparatlona II II II 

■*> II II 1 n || 
t   V" II II 1 » II 
j  Croat Ftednet II 14 14 II o II 
|  Matrix Vaetor Multiply II II n || 
|  Matrix Matrix Multiply II II n II 
j  Vaotor Oparatlona 11 11 21 II II 
|   «pataaJUght X» lubtract II 10 II o II 
j   lat to'laro V»<Xer II II K || 
|   •♦"" II 10 II c II 
1     mmm II 10 II « II 
|   Vaetor Ungth II II nil 
|   Dot rrednet II 10 II o II 
|   Iptrta Right I Add II 10 II o II 
I   lparta~IUght~X JUld II II » II 

ronoTui 53 114 22 

»612 Oanacal Vaetor Matrix Algebra 
AU IranaJ>ynaa_tparaa_Matrix_lq_Mtttix 

AiA Trantpoaa " ~ 
ABA Irana_Vaetor_IeLMatrix 

Jdbltaüpoaa ~ 
AU Traa«_Vaetor_Soalar 

Jib Tranepoaa ~ 
Colon Matrix Oparatlona 

lat_SiagonaT_and_lubtraet_froB_Idantity 
ABA'Tranapoa*     ~ -      - 
ABA'lyai Tranapeaa 

Dot ProduoF Oparatlona onraatrictad 
Dot Prodeet 

Dot Product Oparatlona Haatrietad 
Diagonal Full Matrix Add Onraatrlotad 

"+" 
Diagonal Pull Matrix Add Haatrietad 
Matrix lealar Oparatlona Conatrainad 

• »• 
•/" 

Diagonal Matrix Scaltr Oparatlona 
•«> 

"/• 
Matrix Vaotor Multiply Onrattricttd 

•♦• 

Matrix Vaetor Multiply Raatriotad 
Vaetor Matrix Multiply Onraatrictad 

Vaeter Matrix Multiply Rattrietad 

12 
3 

10 

IS 
2 

II " 1   II 
II H 1   II 
II » HE II 
II H II 
II T ■C || 
II H II 
II T K II 

7 II « II 
" II r O II 

II » n || 
3T II T o II 

II « II 
II » nil 
II » K II 
II N II 
II T DP II 

21 II T o II 
II " II 
II » n || 
II » n n 

11 || N II 
It || » v  II 

II r n || 
II " II 
II x DC II 
II « "C II 
II N | II 
II » 1 DP II 
II Y | NC 11 
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TABLE A-2. PARTS USAGE AND CODE COUNT 

(Part 7 of 18) 

TICK |   TLCIC HUM II Coda Ilia  || »art |0aa || 
HiabMrj      Lower Laval Onlts II apae 1 body || ICodall 

|  Vaetex Vaotor TxtntpoM Multiply Ont*«txletad II 1     II 1   II 
1   **' II 1     II 1 DF || 
|  Vaotet Vaetet TzuupoM Multiply RMttictad II 1« 1  1« II 1 0 II 
|  Hatzli Hatzls Multiply Untaatrletad II 1     II 1   II 

•♦• II 1     II 1 »r || 
|  Hattls Hatzls Multiply Raatriotad II 11 1  20 || 1 o II 
|  Hatrls Hattiz Tzanapeaa Multiply Onraatrload II 1     II 1   II 
j   •♦• II 1     II 1 » II 
|  Natzlz Hatzlz Tzanapeaa Multiply Raatzlotad II 1     II 1 » II 
|  tyaaatrlo Full Itezaga Hatzlz Oparatlona Conatzalnad II 1 1  »11 1   II 
|   Changa llaaant II t     II 1 «C II 
|   lat to Xdantlty Hatrls II 1     II 1 HA || 
|   lat'te'lare Matrix II 1 1   S || 1 V    || 
|   W<rto~ldai£ity II 1     II 1 » II 
j   «ubfraöt fro« Idantlty II 1     II 1 HA || 
|   ■♦■"•" II 2 1   JO || 1 o II 
j        " -■ II 1     II A II 
|  Diagonal Natrls Oparatlona II 1     II II 
|   Idantlty Matrls II 1     II 1 HA jl 
|   lazejlatzls II 1     II 1 HA || 
j   Changa Elaaiant II 1     II K II 
j   RatrlaTo llaaant II 1     II HA || 
|   Row llloa II 1     II HA || 
j   Colin lllea II 1     II HA || 
|   Add to Xdantlty II II MA || 
|   lubFrict fzea Idantlty II II HA || 
j   •♦■   "  - II II »11 
1   * -" II II » II 
j  Vaotoz lealaz Oparatlona Oneonatralnad II II II 

•»■ II II OF || 
1   V" II II or n 
|  Vaeter Scalar Oparatlona Conatralnad II 14 S II II 
j   •♦• II 2 U II o II 
1   "/" II 2 u II o II 
j  Hatrls Scalar Oparatlona Oneonatralnad II II II 
j   "♦• II II HA || 
1   "/" II II M || 
|  SyMatrle Half Itoraga Matrls Oparatlona II II II 
|   Inltlallza II II II 
|   Idantlty Matrls II II or || 
|   laze Hatzls II II or || 
I   Changa llaaant II II or II 
I   Hatzlara llaaant II II or || 
|   Re« Sllca II II or || 
|   Colon lllea II II or || 
|   Add te'ldantlty II II or II 
|   Subtract froa Idantlty II II or || 
1   "+" II II or || 
1      a „N II II or || 
|   lwap_Col II It II 
j   Swapjlow II II II 
|  Synaatzlo Full Itezaga Hatzls Oparatlona Oneonatralnad II II II 
j   Changa llaaant II II or || 
|   Sat te'ldantlty Hatrls II II or n 
|   lat~to~iare Natrls II II or n 
|   Ad4~to~Idan?lty II II or || 
|   lubErart froa Idantlty II II or || j   ,+.   -  - II II or || 
1       •• »•• II II or || 
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TABLE A-2. PARTS USAGE AND CODE COUNT 

(Part 8 of 18) 

ILCIC |   ILCSC MtM 11  Coda 111«  11 Par« |0aa || 
NHtet |      LOMC L»nl Obit« II »P*> 1 bo<lr II ICodaM 

j  Itatcix Opatitlem DnoonttialMd II 1     II 1  II 
|   "+" II 1     II 1 DT || 
i   ■.■ II 1     II 1 W II 
|   "♦" II 1     II 1 DT || 

«.it II 1     II 1 or || 
t   fat to Iduttlty Nattlz II 1     II 1 DT || 
|   ••t~to~Uze Itatilx II 1     II 1 or n 
j   "«•" ~  ~ II 1     II 1 »r ll 
|  Nitrlz Optratlom CenttralMd II 1     II 1  II 
j   "+" II 1     II 1 or n 
j     n.n II 1     II 1 or ll 
|     "♦" II II 1 or n 
1     «.H II II 1 or || 
|   Sat to Idmtlty Matrix II II 1 »r n 
|   •at~to~Iato_Natriz II II 1 or n 
j  DynaaToaTly (pataa Matrix Oparatlona nieonttralnad II II 1  II 
|   fat to Mantity Matrix II II 1 or n 
j   Jat~to~Iaro Matrix II II 1 or || 
|   **fto~Mantity II II 1 or II 
|   IntiCraöt froa Idmtlty II II 1 or ll 
I   «+«   -  " II II 1 or n 
j   "." II II 1 or n 
I  Dynaaleally (paraa Matrix Oparatlona Canatralnad II II 1  II 
I   (at to Zare Matrix II II 1 K II 
j   »dd~to"ldaiitlty II II 1 K || 
|   IttdTraet fro* Idantlty II II 1 K || 
j   iv  -  - II II 1 nil 

"." II II l »11 
|   lat_to_ldantlty_Matrix II II 1 K II 
j  Vaetor Oparatlon(-0neonatralnad II II 1  ll 
I   "+" II     1 II or n 
j   ".« II II or ii 
|   Dot Product II     1 II 1 or n 
I   Vaetorlangth II     1 II 1 or n 
j  Vaetor Oparatlona Conatrainad II   13 1 ^ II II 
I   Dot Product II     1 II m II 
I   VaeEor Length II     1 II nil 
I   "+"  " II    2 | n n " 11 
|        "a" II     1 M T n n 

aonoMu 12» 242 97 
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TABLE A-2. PARTS USAGE AND CODE COUNT 

(Par! 9 of 18) 

nCK |         TIiCIC Haas Coda tin     11 fart |0a« || 
Mabwl                LOMC UT*1 Unit« •*«> 1   body II ICod.ll 

NI3    | ItMdttd Ttlg 13 1        II 
|     AtetuJ 11 17 jj   t 1 0    II 
|     fin 1 N   || 
|     Sin 1 A II 
|     tin 1*11 
|     Cot IN   II 
|     Co« 1 n II 
|     Co« 1 » II 
|     tin Co» IN   II 
|     liiTco» 1 n II 
|     IliTCe* 1 n II 
|     Tin" IN   II 
j     Tan mil 
|     (in 1 A II 
|     Axealn IN   || 
|     Aroaln 1 A II 
|     Arcain in II 
j     Atoooa 1 N   II 
j     Atoooa 1»II 
j     kteeoa 1«II 
j     Aiaala_Aiccoa N   II 
j     Jkreala~Areeoa 1 1       ^ »II 
j     Atoaln~Aroooa «II 
j     Atotan- N   II 
j     Axetaa A || 
|     Aiotaa » II 

•OITOTAU 24 27 25 

HM Oaoaotrlc Opotatlona 
Onit Radial Voctot 
Onlt Hozaal Voetoi 
Coaput« lagaant and tMlt Henal Voetot 
Co^ot« logaant and Unit Motaal Vaetoi with Aroaln 
Croat Clrela Are Langth 

Coaput« 

15 22 ||   T 1 o   II 
1 A || 
1 or || 

23 1C ||    T 1 0    || 
1 « II 

■QITOTAU 31 31 
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TABLE A-l. PARTS USAGE AND CODE COUNT 

(Part 10 of 18) 

nctc |   ncr: HUM ||  Cede 111« II »« tt|Oee || 
KMbatl      Lernt Uval Onlti II f* 1 body || ICodell 

Ml« | llgnal rtooatilng II II " 1   1! 
|  OMMMI rint Oxdax riltar II II T IN || 
|   Dpdtt« CMffielmt* II II M 1   II 
I   rilUt II II " 1   II 
| Ntlaltlilti* II II N 1   II 
|  Toitln Uid Ug riltat II II T 1 » || 
|   Opdat« CMfflelMt« II II N 1   II 
I   rilUt II U « 1   II 
|   toialtltliM II II " 1   II 
1  tttitln Ug rllt« II II » 1 » || 
|   0|p«toU CMfflelmt* II II " 1    II 
I   rlltM II II ■> 1    II 
|   tainltltlli« II II " 1    II 
I  «Mend Order Filter II II T 1 »II 
|   Redefine Ceefflelmtt II II « 1    II 
I   niter II II " 1    II 
|   Relnltltllre II II » 1    II 
|  tuftln Integretor With llalt II II T 1 nn 
|   Dpdit« ll^t II II " 1    II 
|   Opdtte Oeln II II " 1    II 
|   Integtite II II * 1    II 
I   Reeet II II " 1    II 
I   U^t rieg letting II II " 1    II 
|  »oetln Integriter «1th JUyaMtrlo Llalt II II T 1 «II 
I   Opdate limit» II II " 1    II 
|   Opdtte Oeln II II « 1    II 
|   Integrate II II * 1    II 
|   Retet II II " 1    II 
I   Llalt rlig letting II II H 1    II 
j  Upper Lever Llalter II   • 1  u II » 1 o II 
I   Update Llalt« II   2 II N 1  II 
I   Llalt II   I II " 1  II 
|  Opper Llalter II   < II » 1 v Ij 
|   Update Llalt II   x II K 1  II 
I   Llalt II   1 II « 1  II 
|  lower Llalter II   < II » 1 v II 
1   Update Llalt II   1 II " 1  II 
|   Llalt II   1 II " 1  II 
|  kbiolnte Llalter II   < II T 1 o II 
|   Update Llalt II   1 II N 1  II 
|   Llalt II   1 II ■ 1  II 
|  «btelute Llalter Kith Flag II II T 1 n II 
|   Llalt Flag letting II II » 1  II 
|   Llalt II II " 1  II 
I   Opdate Llalt II II " 1  II 

IDBTOTUS 35 110 11 
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TABLE A.2. PARTS USAGE AND CODE COUNT 

(Pan 11 of 18) 

turic |  ncic HUM II Coda Ilia  || tai tlOaa || 
MHb«z|      LeMZ l*nl Unit» II apae body || iCodall 

KIT | OWMZII Puzpoi* Nith II II " 1    11 
j  Intagrttex II II T 1 »II 
|   Halnltlilli* II II K 1    II 
1   "IP**« II II " 1    II 
j   Zntagttt« II II N 1    II 
|  IntatpeUt« ec btrtpelat« II II T 1 m || 
j  (qu«M Root II 7 II T IM || 
1   «Vt II 1 II H 1    II 
|  Mot In Of Iqium II 11 » II T 1 o II 
1  lifln II II T 1»II 
|  Nitn Vila« II II T 1 mil 
|  N*M JkbMlut« Diffanne« II II T 1 «Ml 
|  Two W«y Ttbl* Lookup II II » 1 "Ml 
|   Inltltlli« II II " 1  II 
j   Loeknp Y II II » 1  II 
|   Lookup X II II * 1  II 
j  Lookup Ttbl« li«n Ipaolng II II » 1 m || 
|   XaltUllio II II » t  II 
|   Lookup II II * 1  II 
|   Lookup II II a 1  II 
j  Lookup Ttbl« OfMTWi Ipoelng II II » 1 m || 
|   Inltitlli« II II « 1  II 
j   Lookup II II » 1  II 
|   Lookup II II a 1  II 
j  ZnettMnter II II T 1 mil 
i   Molnltlalii« II II a 1  II 
I   Inowtnt II II a 1  II 
|  Doonaantoz II II T 1 m n 
|   nainltlallia II II a 1  II 
|   Daetwant II II a 1  II 
j  Running Avaraga II II » 1 m n 
|   Kalnltlallt« II II a 1  II 
|   Italaltlallia II II a 1  II 
j   Currant Avaraga II II a 1  II 
j   AoOUMlltOI II 9 || T 1 o II 
|   Ralnltlallia II s II a 1  II 
|   AeeuMlata II 9 II a 1  II 
|   AeeuMlata II i It a 1  II 
|   DattlaTa II s II a 1  II 
j  Changa Caleulatot II II x 1 « || 
|   Ralnltlallia II II a 1  II 
j   Changa II II a 1  II 
|   RattlaT« Valua II II a 1  II 
j  Changa Aeeuaulator II II T 1 « II 
|   Ralnltlallia II II a 1  II 
|   Ralnltlallia II II a 1  II 
j   Aeeuwlat« Changa II II a 1  II 
|   Aoetanlata Changa II II a 1  II 
j   Rattlava Aeeuwlatlen II II a 1  II 
j   Ratrlav« Prarloua Valua It II a 1  II 

imTOTAU 30 41 1« 
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TABLE A-2. PARTS USAGE AND CODE COUNT 

(Part 12 of 18) 

nCM |         TLCSC HUM 11     Coda Ilia     11 Pai rt|0ta || 
Mabatj               LeMt Ural Ofiltt II    f* 1   body II ICodall 

MM    | tolytumitU II 1           It   " 1        II 
j     Radnetien Opaiatlon« II         7 1        «11   « 1        II 
|        IIIM Rtdnetlon II         1 1      » II   T 1 V   || 
|        Coaln« Rtdnetlon II         1 1       «III 1 o   II 
j     Taylor fatlat II 1           II   H 1    II 
|        Taylor natural Log II 1             II    N 1    II 
|            Hat Log Itan II 1             II    T 1 or || 
|            Rat Leg Ttan II 1            II   v 1 or n 
|            Nat Leg (tan II 1             II    T 1 or || 
|            Rat Leg Stan II 1         II   r 1 or n 
|             Rat Log «ton II 1             II    T 1 DP || 
j        Taylor Leg lata N II 1             II    " 1     II 
|            Leg laia H Itan II 1             II    Y 1 a» n 
|               Leg H Itan II 1             II    " 1     II 
|            Leg iaia N Ttan II 1             II    T 1 a* n 
|               Leg H Ttan II 1             II    " 1     II 
|            Log Bai« N «tan II 1             II    T 1» II 
|               Log H ttan II 1         II   a 1     II 
|             Log Bate N Stan II II    T 1 a» n 
|               Leg M Stan II II    » 1     II 
j            Log Baaa H 4tan II II    Y 1 aft || 
|               Log R 4tan II II    1 1     II 
j         Taylor Dagroa Operation! II II    " 1     II 
|             Ned Cot D «ten II II    T 1 or ii 
j            Taa D Itan II II    « 1 DP || 
|            Ned Taa D Itan II II    » 1 Wf || 
I            Ned Tan D Ttan II II    I 1 DP || 
|            Ned Taa 0 (tan II II    T 1 DP || 
|            Ned Tan D Stan II II    » 1 DP || 
|            Ned Taa 0 «ten II II    « 1 DP || 
|            tin 0 Itan II II    T 1 OP || 
|            tin D Ttan II II    T 1 DP || 
|            Sin D (ten II II    T 1 DP || 
|            Pin D Stan II II    T 1 DP || 
|             Mod tin D Itan II II    T 1 DP || 
|            Ned fin D Ttan II II    T IDP || 
|            Ned lla 0 (tan II II    T 1 DP || 
|             Ned fin D Stan II II    T 1 DP || 
|            Ned tin D «ten II             1 II    » 1 DP || 
|            COB D Itan II             1 II    T 1 DP || 
j            Coo D Ttan II             1 II    T 1 DP || 
|            Coa D (ten II             1 II    T 1 OP II 
|            Coa 0 Stan II             1 II    » IDP || 
|            Coa D (ten II             1 II  a 1        II 
|            Ned Coa D Itan II             1 II    T 1 DP || 
|            Ned Cot D Tten II             1 II  r 1 DP || 
|            Ned Cot D (tan II             1 II   r 1 DP || 
|            Ned Cot D Sten II             1 II   r 1 DP || 
I            Sin D (ten II             1 II   a 1        II 
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TABLE A-2. PARTS USAGE AND CODE COUNT 

(Part 13 of 18) 

TLCIC |    TLCSC MUM 11  Cod« Slia  11 Pai ■tl"»« II 
NiuriMrl      LOMI Lml Oniti II «PM 1 body || ICodall 

|   Taylor Radian Opatatlont II 1     II M 1   II 
|     Arotan R 7tan II 1     II I 1 OP || 
j     Axctan R (tan II 1     II T 1 DP || 
|     Atetan R Stan II 1     II T 1 DP || 
|     Arotan R 4tan II 1     II 1 1 DP || 
|     Alt Atetan R Stan II 1     II T 1 OP || 
|     Alt Atetan R 7tai» II 1     II T 1 DP || 
|     Alt Atetan R «tan II 1     II T 1 DP || 
|     Alt Atetan R Stata II 1     II x 1 DP || 
|     Alt Atetan R 4taia II 1     II T 1 DP It 
|     Nod Sin R 6tan II 1     II T 1 DP || 
|     Hod Sin R Stats II 1     II T 1 DP || 
|     Mod Sin R 4teza II 1     II * 1 DP || 
|     Cea R Stan II 1     II T 1 DP || 
|     Coa R Ttata II 1     II T 1 OP || 
|     Coa R «tata II 1     II T 1 DP || 
|     Coa R Stata II 1     II I 1 DP || 
|     Coa R 4tata II 1     II T 1 OP || 
|     Nod Coa R Stata II II T 1 OP || 
|     Nod Cea R Ttata II II I 1 DP || 
|     Nod Coa R (tata II II r 1 DP || 
|     Nod Coa R Stata II II r 1 OP || 
|     Nod Coa R 4taia II II T 1 OP || 
|     Tan R Stata II II x ! DP || 
|     Ned Tan R Stata II II x i DP || 
|     Ned Tan R Ttata II II x 1 OP || 
|     Nod Tan R Stata II II x 1 DP || 
|     Nod Tan R Stata II II x 1 DP H 
|     Ned Tan R 4tata II II x 1 DP || 
|     Atealn R Stata II II x 1 OP || 
|     Atealn R Ttata II II x 1 OP || 
|     Atealn R «tata II II x 1 OP || 
|     Atealn R Stata II II x 1 OP || 
|     Ateeo« R Stata II II x 1 DP || 
j     Ateeo* R Ttata II II x 1 DP || 
j     Atooot R 6tata II II x 1 DP || 
j     Ateeei R Stata II II x 1 OP || 
j     Atetan R Stata II     1 II x 1 OP || 
|     Sin R Stata II     1 II x 1 DP || 
|     tin R Ttata II     1 II x 1 OP || 
|     Sin R «tata II     1 II x 1 DP || 
|     Sin R Stata II     1 II x 1 DP || 
|     Sin R 4tata II     1 II x 1 OP || 
|     Ned Sin R Stata II     1 II x 1 DP || 
|     Ned Sin R Ttata II     1 II x 1 DP || 
|  Nodlf led Newton Raphaon II   3 1 1 II ■ 1   II 
1   «q» II   4 | 33 II X 1 o II 
|  Newton Raphaon II     1 II « 1   II 
1   MRt II     1 II x 1 DP || 
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TABLE A-2. PARTS USAGE AND CODE COUNT 

(Part 14 of 18) 

TICK |   ILCIC MUM II  Cede Slie  || Part |0*e || 
HiMb«t|      LeMr Ural Unit« II  •PM 1 body || ICedell 

|  Syatta runetlen« II 1     II 1   II 
j    faalelxol* Opatttlom II 1     II 1   II 
|     Sin II 1     II 1 Of || 
|     Cot II 1     II 1 »T || 
|     Itn II 1     II 1 »r II 
j     Atetln II 1     II 1 DP II 
j     Areeot II 1     II 1 or II 
j     Aretui II 1     II 1 OP || 
j   D«gxM Opantient II 1     II 1  II 
|     Sin II 1     II 1 OP || 
|     Coi II 1     II ' OP || 
I     Tm II 1     II 1 OP || 
j     Arotln II 1     II OP II 
j     Aioeot II II OP II 
|     Atetta II II OP II 
j    Squtx* Root II II OP II 
1     S<irt II II II 
|   BIM 10 Lo^arltha II II n n 
|     Log 10 II II II 
|    Bat* H Logarltha II II » II 
1     1*7« II II II 
j    Radltn Oparatlem II II II 
|     Sin II II OP II 
|     Cos II II OP II 
|     Taa II II OP II 
|     Arotln II II OP II 
j     Aioeea II II OP II 
j     Arottn II II OP II 
|  Cody Ntlta II II II 
j   Cody Natural Leg II II II 
|     Hat Leg II II » II 
1      R II II II 
|      Dafleat II II II 
|   Cody Leg Base N II II II 
|     Leg Baaa N II II NA || 
1      Leg N II    1 II II 
j  Continued rraetlont II    1 II II 
j   Continued Radian Operatient II    1 II II 
I     Tan R II    1 II OP II 
j     Aretan R II    1 II OP II 
|  rika II   3 | 5 II II 
|    rike Saalcirela Opetttien« II   I 1 10 II II 
|     Arealn • 6texa II   1 1 31 II " II 
|     Areeea S «tan II   1 1 32 II o II 
j  General Pelyneadal II    1 II II 
|   Polynealal II    1 II n II 
|  Bart II    1 II II 
j   Hart Radian Operation* II    1 II II 
|     Coa R Sten II    1 II OP II 
|    Hart Degree Operation! II    1 II II 
|     Cot D Stem II    1 II DP II 
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TABLE A-2. PARTS USAGE AND CODE COUNT 

(Part 15 of 18) 

TLCSC TLCSC HUM 

lomi Laral Onlti 
||     Cod* SIN      || PirtlOM  || 
||   •po |   body || |Ced*|| 

|  Hittlngi II 1     II * 1   II 
|   Hattlngi DagtM Oparttlem II 1     II H 1   II 
|     Sin D Stars II 1     II Y 1 or || 
|     Sin D 4t*tB II 1     II T 1 or n 
j     Cot D SUni II 1     II Y 1 M || 
j     Cei 0 4t«za II 1     II » 1 or n 
|     Tin 0 Stan II 1     II T 1 or n 
j     Tin D 4t«tB II 1     II T 1 or II 
j   Hattlngi Radian Oparitlom II 12 1   4( || > 1  II 
|     Cot R Stan II 1 1   KMT 1 v II 
|     Cei R 4taiB II 1 1   W II T 1 0 || 
j     Tan R Stars II 1 1   W II T 1 & II 
j     Tan R 4taza II 1 1   " II T 1 o II 
j     Axotin R (tan II 1 1   " II I 1 v   || 
j     Atotan R Ttaxa II 1     II T 1 or n 
j     Aretan R Ctan II 1 1   "III 1 o II 
|     Nad Aretan R Itan II 1     II Y 1 or n 
|     Nad Atetan R 7tan II II Y or n 
|     Ned Aretan R Ctan II II Y or || 
|     Sin R Staxa II 1 U II Y "  II 
|     tin R 4tara II 1 13 II Y 0 II 

II II " II 
j   ChabyahaT Radian Oparatlena II II " II 
|     Sin R Stan II II Y or n 
j   Chabyahar Dagraa Oparatlena II II > II 
|     Sin D Stan II II Y or n 
j   Chabyahav Saalelrela Oparatlena II II > II 
|     Sin 9 Stan II II Y or || 

SOBTOTALS 49 104   133 

M»l | Abatraet Data Struetuna II II " II 
|  Bounded Stack II II Y m II 
|   Clear Stack II II > II 
|   JUUlTawnt II II " 1 II 
j   RatrleTe Elaaant II II " 1 II 
j   Peak II II « 1 II 
|   Stack Statue II 11 » 1 II 
|   Stack-length II II » 1 II 
|  Onbeundad Stack ll II Y | MA || 
j   InltlaUia II II " 1 II 
|   Clear Stack II II H 1 II 
j   Free Haaory II II > 1 II 
|   Add Ileaent II II « 1 II 
|   RatrleTe Ileaent II II " 1 II 
|   Peak II II > 1 II 
|   Stack Statue II II " 1 II 
|   Stack-Length II II « 1 II 
|   Det Hext II II N 1 II 
|    Set-Next II II N 1 II 
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TABLE A-!. PARTS USAGE AND CODE COUNT 

(Part 16 of 18) 

ncic TLCf C Ham 
lewar Urtl Onlti 

||      Coda lln     || Put|OM || 
||    tpM |   body || |Ced*|| 

I  OnboundMl riFO Buff«t II 1     II 1 DP || 
|   InltltllM Buffai II 1     II 1   II 
|   CUtr Buf far II 1     II 1   II 
|   rtM ÜMOiy II 1     II 1   II 
j   Add IlMant II 1     II 1   II 
j   totriM« ll«Mnt II 1     II 1   II 
I   Paak  ~ II 1     II 1   II 
|   Buffar Statut II 1     II 1   II 
j   Buffax'Langth II 1     II 1   II 
|   Dot Mazt II 1     II 1   II 
|   Sat~Hart II 1     II 1   II 
|  Honbleeklng Circular Buffar II   20 1   > II 1 o II 
I   Claar Buffar II    1 1  io n 1   II 
|   Add iTaaaat II   2 1  21 || 1   II 
|   Hatrlava BlaMnt II   2 1   » II 1   It 
|   Paak  " II    1 1  V  II 1   II 
I   Buffar Statui II    1 1   14 II 1   II 
|   Buffar Langth II   1 1   » II !  II 
j  DnboundaS Priority Quaua II   21 1   52 II 1 0 || 
I   Quaua Statut II    1 1   14 II 1    II 
|   Qoaua"Ungth II    1 1   » II 1    II 
I   Dot Ifist II    1 1   i  II 1    II 
I   Sat'Nast II   2 1   « II 1     II 
I   InlCiallia II    1 1   K II 1    II 
I   Claar Quaua II   1 1   1» II 1    II 
|   Praa Saaory II    1 1   12 II 1    II 
j     Add IlMMDt II    3 1   29 || 1    II 
j   Ratrlava BlaMnt II   2 1   11 II 1    II 
|   Paak II    1 1   12 II II 
|  Beundad riTO Buffar II   21 1   » II 0 II 
j   Paak II    1 1   11 II II 
|   Buffar Statut II    1 1  is II II 
I   Buffar~Langth II    1 1   » II II 
I   Claar Suffar II    1 1   10 II II 
j   Add BlaMnt II   2 1   1» II II 
|   Rttriaya BlaMnt II   2 1   1» II II 
j  Arallabla Jptoa Litt Oparttiont II  o t   *  II II 
|   Ha« Noda II  o 1  " II II 
|   SaTa Noda II  o 1   10 II II 
I   Sara Litt II  o 1   12 II II 

S0BT01ALS 99 431 ( 

P(»2 | Abttraot Preoattat II 1     II N II 
|  Pinita Stata Mtohina II 1     II II 
|  Naaly Naehlna II 1     II II 
I  iTant-DriTan Saquanear II 1     II II 
j  TlM-Drivan Saquanear II 1     II II 
j  Saquanoa Centrollar II 1     II II 

SOBTOTALS 0 0 1 
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TABLE A.2. PARTS USAGE AND CODE COUNT 

(Part 17 of 18) 

TLCSC |   TLCSC MUM 11  Coda Slia  11 PattlOta || 
HuBbatl      UMI I*T»1 Dnlti II tpao 1 body II ICadall 

P951 j Dnlt CenTaztlen« II 1     II 1   II 
j  KUogzaa« pat Nttat Iquttad and Pounda pat Foot Squared II 1     II 1   II 

ConTanlon to Poundi par Foat2 II 1     II 1 » II 
|   ConTatilon to Rlleorui par Natat2 II 1     II 1 « || 
|  Radlaai and Saaloitolai par tmnnnA wvBna II 1     II 1   II 
j   CenTanlen ta Saaleirola* pat Saeond II 1     II 1 A || 
j   Convatalon ta Radiant pat Saeond II 1     II t » II 
j  Dagtaat and laalelrelai II 1     II 1   II 
j   Canyatalen ta Saalolrolat II 1     II 1 n II 
j   CenTatilen ta Dagtaai II 1     II 1 n II 
j  Dagraaa and Saaloitolai pat Saeond II 1     11 1    II 
j   Cenvaralen ta Samlolrelaa pat Saeond II 1     II 1»II 
j   Comrazilon ta Dagtaaa pat Saeond II 1     II 1»II 
|  Saeondt and Nlnutaa II 1     II II 
j   Cenrattlon ta Mlnutai II II 1 m || 
j   Convatalon ta Saeondt II II 1 n || 
j  Cantlgtada and Fahtanbalt II II II 
j   ConTartlon to rahzanhalt II II m || 
j   Cenrattlon to Cantlgtada II II 1 » II 
|  Cantlgtada and «alrin II II II 
j   ConTattlon ta Ralrln II II » II 
j   Cenvattlon to Cantlgtada II II » II 
|  Fahtenhalt and Kalrln II 11 II 
|   ConTartlon ta Kalvln II II A || 
j   Conyattlon ta Fahtanhalt II II » II 
j  Kllagraat and Poundt II II II 
j   Convartlon to Kllegttat II II A || 
j   ConTattlon to Poundt II II « II 
j  Hatatt and Faat pat Saoond II II II 
|   ConTartlon to Paat pat Saeond II II m II 
j   ConTattlon to Hatatt pat Saeond II   2 S II o II 
j  Hatatt and Faat pat Saeond Squatad II II II 
|   ConTattlon to Faat pat Saeend2 II II A II 
j   ConTartlon ta Hatatt pat Saeond2 II II A II 
j  Caat and Hatatt pat Saeond Squatad II    1 II II 

ConTattlon to Hatatt pat Saeend2 II   2 | s II o II 
1   ConTartlon to Caat II    1 II A || 
|  Caat and Paat par Saeond Squatad II    1 II II 

ConTartlon to Faat par Saeond2 II    1 II A || 
|   ConTartlon to Gaat II    1 II A || 
j  Radiant and Dagraaa II    1 II II 
j   ConTartlon to Dagtaat II    1 II A || 

ConTattlon to Radiant II    1 II A || 
|  Radlana and Dagraaa pat Saeond II    1 II II 
|   ConTartlon to Dagtaat pat Saeond II    1 II A || 
j   ConTartlon to Radiant par Saeond II    1 II A || 
j  Radlana and Saalelrelat II   5 | 2 II II 
j   ConTattlon to Saalolrolat II   1 1 s II V    II 
j   ConTattlon to Radiant II   1 1 s II 5 II 
|  Hatara and Faat II     1 II II 
j   ConTartlon to Faat II     1 II A || 
j   ConTattlon to Hatatt II     1 II A || 

SOBTOTALS 11 22 34 
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TABLE A.2. PARTS USAGE AND CODE COUNT 

(Concluded) 

ILCIC |          nciC HUM 
Niafctxl               Lowaz lAfl Unit» 

II 
II 

Coda Ilia     || »actjOra || 
»pM |    body ||          ICodaM 

PI52    | Bztaxntl rent Conrazilon Two» Ce^pl«Mnt 
|     foal« 
I     DMetl« 

II 
II 
II 

1 
1 

2 1 

II 
II 

1 II 

"    1        II 
r   1 mil 
»   1 o   H 

ranoutu 2 1 2 

M»0   | QnaUmien Oparttlen« 
j     Quataznlen Coapntad rtoa lular kngl*« 
|     NexMlliad Quataznlea 
|      -*- 

II 
II 
II 
II 

1 
15 | 

1 
4 1 

II 
26 || 

II 
24 || 

"    1        II 
T    I 0    II 
I    1 Mk || 
»    1 0    || 

19 50 3 

TOTJOS 

CODI TOTALS 

1,431     2,4» 

3,»1 

453 

IK) 
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INITIAL DISTRIBUTION LIST 

GTE GOVERNMENT SYS CORP 
ADVANCED DIGITAL SYSTEMS 
AFATL/FXG 
MILITARY COMPUTER SYSTEMS 
LOCKHEED/O/62-81, B/563, F15 
HUGHES/FULLERTON 
UNISYS/MS-E1D08 
WESTIMGHOUSE/BALTIMORE 
AFWAL/AAAS-2 
BOOZ-ALLEN & HAMILTON, INC 
BOEING AEROSPACE COMPANY/MS 8H-09 
BOEING AEROSPACE CO 
AD/YGE 
SOFTWARE PRODUCTIVITY CONSORTIUM 
ARMY CECOM/AMSEL-COM-IA 
NAVAL TRAINING SYS CENTER/CODE 251 
SCIENCE APPLICATIONS INTL CORP 
RAYTHEON/MSL SYS DIVISION 
CALSPAN 
KAMAN SCIENCES CORPORATION 
NAVAL RESEARCH LAB/CODE 5595 
CARNEGIE MELLON UNIV/SEI/SHOLOM 
COLEMAN RESEARCH CORP 
COLSA, INC 
CONTROL DATA CORPORATION 
WINTEC 
CONTROL DATA/DEPT 1855 
DACS/RADC/COED 
RAYTH?ON/EQPT DIV 
BMO/ACD 
DDC-I, INC 
ENGINEERING & ECONOMICS RESEARCH/ 

DIV OFFICE 
BDM CORP 
AFATL/PXG/EVERS 
ESD/SYW-JPMO 
FORD AEROSPACE & COMM CORP/MS HOt 
UNIV OF COLORADO #202 
ANALYTICS 
AFWAL/FIGL 
WESTINGHOUSE ELECTRIC CORP/MS 5220 
GENERAL DYNAMICS/MZ W2-5530 
HONEYWELL INC 
TAMSCO 
STARS 
FORD AEROSPACE/MS 2/206 
GRUMMAN HOUSTON CORPORATION 
NAVAL AVIONICS CENTER/NAC-825 
NASA JOHNSON SPACE CENTER/EH/GHG 
BOEING AEROSPACE/MS-8Y97 
HARRIS CORPORATION/GISD 

1 CARNEGIE MELLON UNIV/ 
1   SOFTWARE ENGINEERING INST 
M N0AA/ERL/R/E/AL1 
1 INTERMETRICS, INC/G. RENTH 
1 INTERMETRICS, INC/D.P. SMITH 
1 FORD AEROSPACE/WEST DEVEL DIV 
1 AD/ENE 
1 R0CKWELL/MS-GA21 
1 GRUMMAN CORP/MS D-31-237 
1 INSTITUTE OF DEFENSE ANALYSIS 
1 TELEDYNE BROWN/MS 178 
1 ÜSAF/TAWC/SCAM 
1 BOEING AEROSPACE CO/D. LINDBERG 
5 LOGICON 
1 EASTMAN KODAK/DEPT 17 
1 SYSTEMS CONTROL TECH, INC 
1 E-SYSTEMS/GARLAND DIV 
1 AFWAL/AAAF 
1 MARTIN DEVELOPMENT 
1 MA COMPUTER ASSOCIATES INC 
1 IBM FEDERAL SYS DIV/MC 3206C 
1 MCDONNELL DOUGLAS/INCO, INC 
1 UNITED TECH, ADVANCED SYS 
1 MCDONNELL AIRCRAFT CO/DEPT 300 
1 WESTINGHOUSE ELEC/MS 432 
1 MHP FU-TECH, INC 
1 ITT AVIONICS 
1 COSMIC/UNIV OF GA 
1 NAVAL OCEAN SYS CENTER/CODE 423 
1 NAVAL WEAPONS CTR/CODE 3922 
1 ODYSSEY RESEARCH ASSOCIATES, INC 

USA ELEC PROVING GRD/STEEP MT-DA 
1 PATHFINDER SYS 
1 BDM CORPORATION 
1 PERCEPTRONICS, INC 
1 PHOENIX INTERNATIONAL 
1 MCDONNELL DOUGLAS ASTRO CO 
1 GTE LABORATORY/RUBEN PRIETO-DIAZ 
1 PROPRIETARY SOFTWARE SYSTEMS 
1 ADVANCED TECHNOLOGY 
1 STANFORD TELECOMMUNICATIONS, INC 
1 RATIONAL 
1 LOCKHEED MISSILES & SPACE CO 
1 HERCULES DEFENSE ELEC SYS 
1 AEROSPACE CORP 
1 ROGERS ENGINEERING & ASSOCIATES 
1 ADASOFT INC 
1 ESD/XhSE 
1 SANDERS/MER 24-1212 
1 CSC/ERIC SCHACHT 
1 COMPUTER TECH ASSOCIATES, INC 
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INITIAL DISTRIBUTION LIST  (CONCLUDED) 

SCIENCE APPLICATIONS  INTER CORP 
HQ CASE/CBRC 
GOULD INC/CSD 
HQ AFSPACECOM/LKWD/STOP 32 
SVERDRUP/EGLIN 
HONEYWELL INC/CLEARWATER 
TECHNOLOGY SERVICE CORP 
AEROSPACE/LOS ANGELES 
SOFTWARE ARCHITECTURE & ENGIN 
LORAL SYSTEMS GROUP/D/M76-C2E 
NADC/CODE 7033 
UNISYS/PAOLA RESEARCH CTR 
SIRIUS INC 
GENERAL RESEARCH CORP 
SOFTECH,  INC/R.L.  ZALKAN 
SOFTECH,  INC/R.B.   QUANRUD 
SOFTWARE CERTIFICATION  INS 
SOFTWARE CONSULTING SPECIALIST 
SOFTWARE PRODUCTIVITY SOLUTIONS,  INC 
STAR-GLO INDUSTRIES INC 
NADC/CODE 50C 
WESTINGHOUSE/BALTIMORE 
MITRE CORPORATION 
SYSCON CORP/I. WEBER 
SYSCON CORP/C.  MORSE 
SYSCON CORP/T.  GROBIC KI 
AEROSPACE CORPORATION/M-8-026 
TEXTRON DEFENSE SYSTEMS 
GENERAL DYNAMICS/MZ  1771 
TIBURON SYSTEMS,  INC 
TRW DEFENSE SYS GROUP 
NASA SPACE STATION 
BALLISTIC MSL DEF ADVANCED/ 

TECHNOLOGY CENTER 
IBM CORPORATION/FSD 
VISTA CONTROLS CORPORATION 
VITRO CORPORATION 
NAVAL RESEARCH LABORATORY/CODE 5150 
CACI,  INC 
AFSC/PLR 
DIRECTOR ADA JOINT  PROGRAM OFFICE 
MCDONNELL DOUGLAS ASTRONAUTICS/ 

E 434/106/2/MS22 
SDIO/S/PI 
ADVANCED SOFTWARE TECH  SPECIALTIES 
DTIC-DDAC 
AFCSA/SAMI 
AUL/LSE 

FTD/SDNF 1 
AFWAL/FIES/SURVIAC 1 
HQ USAFE/INATW 1 
AFATL/CC 1 
AFATL/CA 1 
AFATL/DOIL 2 
6575 SCHOOL SQUADRON 1 
IITRI 1 
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DEPARTMENT OF THE AIR FORCE 
WRIGHT LABORATORY (AFSC) 

EQLIN AIR FORCE BASE, FLORIDA, 32542-5434 

REPLY TO       .„—,. 
ATTN OF: MNOI AO~ffi% 9^9 13 Feb 92 
SUBJECT: Removal of Distribution Statement and Export-Control Warning Notices 

TO; Defense Technical Information Center 
ATTN: DTIC/HAR (Mr William Bush) 
Bldg 5, Cameron Station 
Alexandria, VA 22304-6145 

1. The following technical reports have been approved for public release by 
the local Public Affairs Office (copy attached). 

Technical Report Number 

i . 88-I8-V0I-4 
Z. 88-I8-V0I-5 
3 88-I8-V0I-6 

.4. 88-25-Vol-l 
5. 88-25-V01-2 

fe. 88-62-Vol-l 
-7. 88-62-V01-2 
^. 88-62-V01-3 

9- 85-93-Vol-l 
40. 85-93-Vol-2 
M. 85-93-Vol-3 

\Z. 88-IS- 
IS. 88-18- 
\A. 88-18- 
1S, 88-18- 
Mo. 88-18- 
f7. 88-18- 
1^.88-18- 
19. 88-18- 

-Vol-l 
•Vol-2 
•Vol-7 
•Vol-8 
■Vol-9 
•Vol-10 
•Vol-11 
•Vol-12 

AD Number 

ADB 120 251 
ADB 120 252 
ADB 120 253 

ADB 120 309 
ADB 120 310 

ADB 129 568 
ADB 129 569 
ADB 129-570 

ADB 102-654 l- 
ADB 102-655 
ADB 102-656 

ADB 120 248 
ADB 120 249 
ADB 120 254 
ADB 120 255-^ 
ADB 120 256 
ADB 120 257^ 
ADB 120 258 
ADB 120 259 

2. If you have any questions regarding this request call me at DSN 872-4620. 

LYNMS. 
Chief, Scientific and Technical 

Information Branch 

1 Atch 
AFDTC/PA Ltr, dtd 30 Jan 92 
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DEPARTMENT OF THE MR RNKE 
HEAOQUAfnCM AIR POKE DE\CU)I>MEHT TCST CENTER (AFK) 

EQUN AIR FORCE BASfe. FLORIDA 325424000 

REPLY TO 
ATTNOF;     PA (Jim Swinson, 882-3931) 30 January 1992 

SUBJECT:    Clearance for Public Release 

TO:     WL/MNA 

llie following technical reports have been reviewed and are approved for 
public release: AFÄni-TR-88-18 (Volumes 1 & 2), AFAIL-TR-88-18 (Volumes 
4 thru 12), AFATL-TR-88-25 (Volumes 1 & 2), AFATL-TR-88-62 (Volumes 1 thru 3) 
and AFAII/-TR-85-93 (Volumes 1 thru 3). 

impi N. PRIBYIA, Lt Col, 
Chief of Public Affairs 

AFDTC/PA 92-039 


